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Abstract—We present a distributed random linear net- randomized approach that asymptotically achieves this
work coding approach for transmission and compression capacity. We consider a general multicast framework —
of information |n.general multi-source multicast netwo.rks. multi-source multicast, possibly with correlated sources,
Network nodes independently and randomly select linear o general networks. This family of problems includes
mappings from inputs onto output links over some field. . yiti o4 single-source multicast for content delivery
We show that this achieves capacity with probability .

and the incast or reachback problem for sensor networks,

exponentially approaching 1 with the code length. We | X . )
also demonstrate that random linear coding performs 1N Which several, possibly correlated, sources transmit

compression when necessary in a network, generalizingt0 @ single receiver. We use a randomized strategy: all
error exponents for linear Slepian-Wolf coding in a natural nodes other than the receiver nodes perform random
way. Benefits of this approach are decentralized operation linear mappings from inputs onto outputs over some
and robustness to network changes or link failures. We field. These mappings are selected independently at each
show that this approach can take advantage of redundant pode. An illustration is given in Figure 1. The receivers
network capacity for improved success probability and heaq only know the overall linear combination of source
robustness. We illustrate some potential advantages Ofprocesses in each of their incoming transmissions. This

random linear network coding over routing in two exam- | f i b t with ht ission block
ples of practical scenarios: distributed network operation information can be sent with each transmission block or

and networks with dynamically varying connections. Our Packet as a vector of coefficients corresponding to each
derivation of these results also yields a new bound on Of the source processes, and updated at each coding node

required field size for centralized network coding on by applying the same linear mappings to the coefficient
general multicast networks. vectors as to the information signals. The relative over-
Index Terms— distributed compression, distributed net- head O_f transmitting these coefficiepts decreases with
working, multicast, network coding, random linear coding increasing length of blocks over which the codes and
network remain constant. For instance, if the network
and network code are fixed, all that is needed is for
l. INTRODUCTION the sources to send, once, at the start of operation, a
. . . canonical basis through the network.
The capacity of multicast networks with network cod- . 9 :
. . : - L Our primary results show, firstly, that such random
ing was given in [1]. We present an efficient dIStl‘IbuteP . . . ) . )
inear coding achieves multicast capacity with probabil-
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conditions may be varying over time, our work hints ahe solution. There are also many issues surrounding
a beguiling possibility: that a network may be operatdatie adaptation of protocols, which generally assume
in a decentralized manner and still achieve the infareuting, to random coding approaches. We do not address
mation rates of the optimized solution. Our distributethese here, but rather seek to establish that the potential
network coding approach has led to and enabled subbenefits of random linear network coding justify future
guent developments in distributed network optimizatiospnsideration of protocol compatibility with or adapta-
e.g. [20], [13]. The distributed nature of our approaction to network codes.
also ties in well with considerations of robustness to The basic random linear network coding approach
changing network conditions. We show that our approaatvolves no coordination among nodes. Implementations
can take advantage of redundant network capacity fior various applications may not be completely protocol-
improved success probability and robustness. Moreovigee, but the roles and requirements for protocols may
issues of stability, such as those arising from propagatiba substantially redefined in this new environment. For
of routing information, are obviated by the fact that eadhstance, if we allow for retrials to find successful codes,
node selects its code independently from the others. we in effect trade code length for some rudimentary
Our results, more specifically, give a lower bound ocoordination.

the probability of error-free transmission for independent Portions of this work have appeared in [9], which
or linearly correlated sources, which, owing to the paimtroduced distributed random linear network coding, [8],
ticular form of transfer matrix determinant polynomialswhich presented the Edmonds matrix formulation and
is tighter than the Schwartz-Zippel bound (e.g., [23h new bound on required field size for centralized
for general polynomials of the same total degree. Thietwork coding, [12], which generalized previous re-
bound, which is exponentially dependent on the codelts to arbitrary networks and gave tighter bounds for
length, holds for any feasible set of multicast connectioasyclic networks, [11], on network coding for arbitrarily
over any network topology (including networks witrcorrelated sources, and [10], which considered random
cycles and link delays). The result is derived using lamear network coding for online network operation in
formulation based on the Edmonds matrix of bipartitdynamically varying environments.
matching, which leads also to an upper bound on field
size required for deterministic centralized network cogy  overview
ing over ggneral networks. We further give, f_o_r acyclic A brief overview of related work is given in Sec-
networks, tighter bounds based on more specific netwarkn I-B. In Section II. we describe the network model
structure, and show the effects of redundancy and lin ' : o .

and algebraic coding approach we use in our analyses,

reliability on success probability. For arbitrarily correélnd introduce some notation and existing results. Sec-

lated Sources, we give error bounds_ for minimum entro%n Il gives some insights arising from consideration
and maximum a posteriori probability decoding. In the

special case of a Slepian-Wolf source network Consistiof bipartite matching and network flows. Success/error

n - : .
: ) Oo?obablllty bounds for random linear network coding are
of a link from each source to the receiver, our error

exponents reduce to the corresponding results in [4] diven for independent and linearly correlated sources

: : . : in Section IV and for arbitrarily correlated sources in
linear Slepian-Wolf coding. The latter scenario may th . . : .

. ; ection V. We also give examples of practical scenarios
be considered a degenerate case of network coding.

in which randomized network coding can be advanta-

We llustrate some possible applications with twQ . : .
. . . ._geous compared to routing, in Section VI. We present
examples of practical scenarios — distributed settlngs

: . . . ur conclusions and some directions for further work in
and networks with dynamically varying connections = : : .
. . . . .~ Section VII. Proofs and ancillary results are given in the
in which random linear network coding shows particular .

) . appendix.
promise of advantages over routing.
This paper is an initial exploration of random linear

network coding, posing more questions that it answei. Related Work
We do not cover aspects such as resource and energghlswede et al. [1] showed that with network cod-
allocation, but focus on optimally exploiting a giverning, as symbol size approaches infinity, a source can
set of resources. Resource consumption can naturallyrbelticast information at a rate approaching the smallest
traded off against capacity and robustness, and acrassimum cut between the source and any receiver. Li
multiple ,communicating,sessions;zsubsequent work enal. [19] showed that linear coding with finite symbol
distributed resource optimization, e.g. [13], [21], hasize is sufficient for multicast. Koetter andédard [17]
used random linear network coding as a component resented an algebraic framework for network coding
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that extended previous results to arbitrary networks andThere arer discrete memoryless information source
robust networking, and proved the achievability witprocessesXy, X,..., X, which are random binary se-
time-invariant solutions of the min-cut max-flow boundjuences. We denote the Slepian-Wolf region of the
for networks with delay and cycles. Reference [17] alsmurces

gave an algebraic characterization of the feasibility of a

multicast problem and the validity of a network codingg ¢, = {(Rth, R ZRi > H(Xs|Xse)
solution in terms of transfer matrices, for which we gave ieS

in [8] equivalent formulations obtained by considering

bipartite matching and network flows. We used these VS C {1,2,...,7“}}

formulations in obtaining a tighter upper bound on the

required field size than the previous bound of [17], anghere X3 = (X;,,X,,,... Xis )ik € Sk =
in our analysis of distributed randomized network cod- |S|. Source processY; is generated at node

ing, introduced in [9]. Concurrent independent work bg(i), and multicast to all nodeg € b(i), wherea :
Sanders et al. [26] and Jaggi et al. [14] considered singlﬁ-,__.’r} — Vandb: {1,...,r} — 2V are arbitrary
source multicast on acyclic delay-free graphs, showin%ppings_ In this paper we consider the (multi-source)
similar bound on field size by different means, and giving, iticast case wheré(i) = {B,..., 54} for all i €
centralized deterministic and randomized polynomia{ll’r}_ The nodesi(1),...,a(r) are calledsource nodes
time algorithms for finding network coding solutions;g the nodess,, ..., 3, are calledreceiver nodesor
over a subgraph consisting of flow solutions to eaGRceivers. For simplicity we assume subsequently that
receiver. Subsequent work by Fragouli and Soljanin [ZJ(Z-) £ B; Vi€ [l,r],j € [1,d]. The mappings, the set
gave a tighter bound for the case of two sources a’{'}él,...,ﬁd} and the Slepian-Wolf regioR sy specify a

for some configurations with more than two sourceget of multicastonnection requirement¥he connection
Lower bounds on coding field size were presented by¥quirements are satisfied if each receiver is able to
Rasala Lehman and Lehman [18] and Feder et al. [Gdproduce, from its received information, the complete
Reference [6] also gave graph-specific upper boungsrce information. A grap = (V, &), a set of link
based on the number of “clashes” between flows frogypacities{c;|l € £} and a set of multicast connection
source to terminals. _ requirements’ specify amulticast connection problem

Dougherty_ et al. [5] presentgd results on linear so-\ne make a number of simplifying assumptions. Our
lutions for binary solvable multicast networks, and 0fn5yvsis for the case of independent source processes
non-finite field alphabets. The need for vector coding.c \mes that each source procésshas an entropy
solutions in some non-multicast problems was consifle of one bit per unit time; sources of larger rate are
ered by Rasala Lehman and Lehman [18]eddrd et qqejied as multiple sources at the same node. For the
al. [22] and Riis [25]. Various practical protocols for andiase of finearly correlated sources, we assume that the
experimental demonstrations of random linear netwog, ,rces can be modeled as given linear combinations of
coding [3] and non-randomized network coding [29),nderlying independent source processes, each with an
[24] have also been presented. entropy rate of one bit per unit time, as described further

II. M ODEL AND PRELIMINARIES in Section 1I-B. For the case of arbitrarily correlated
sources, we consider sources with integer bit rates and
. . . arbitrary joint probability distributions.

Our basic network coding model is based on [1], [17]. For the case of independent or linearly correlated
A network is represented as a directed gréipa (V. ), sources, each link € € is assumed to have a capacity
where is the set of network nodes atlis the set of . of one bit per unit time; links with larger capacities
links, such that information can be sent noiselessly frofe modeled as parallel links. For the case of arbitrarily
nodei toj forall (i, j) € €. Eachlinkl € £ is associated qrelated sources, the link ratesare assumed to be
with a non-negative real numbet; representing its integers.

transmission capacity in bits per unit time. Reference [1] shows that coding enables the multicast
Nodes: and j are called theorigin and destination j,¢omation rate from a single source to attain the
respectively of link(i, j). The origin and destination of yininm of the individual receivers’ max-flow bourds

alink I € & are denoted(/) andd(l) respectively. We ,n4 shows how to convert multicast problems with
assume (b).#-d(l)-V-I-.EThe information transmitted

Pn a |in!(l € 5. is Obtaine_d as a coding function of 1 the maximum commodity flow from the source to individual
information previously received af(l). receivers

A. Basic model
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multiple independent sources to single-source problempsocesses, and the information processes transmitted on
Reference [19] shows that linear coding is sufficient &ach link, are sequences of lengthlocks or vectors of
achieve the same individual max-flow rates; in fact, fits, which are treated as elements of a finite figjd
suffices to do network coding using only scalar algebrajc= 2“. The information procesg; transmitted on a link
operations in a finite field»., for some sufficiently large j is formed as a linear combination, I, of link j’s

u, on length« vectors of bits that are viewed as elemeniaputs i.e. source processes; for which a(i) = o(j)

of Fo. [17]. The case of linearly correlated sources iand random processeg for which d(I) = o(j), if

similar. any. For the delay-free case, this is represented by the
For arbitrarily correlated sources, we consider ogquation

erations inF, on vectors of bits. This vector coding

model can, for given vector lengths, be brought into  “7 — Z @i Xi + Z fiiYi-

the scalar algebraic framework of [17] by conceptually {iz a(@=c()} {t: )=o)}

expanding each source into multiple sources and ealheith output procesg/s; at receiver nodé is a linear

link into multiple links, such that each new sourc€ombination of the information processes on its terminal

and link corresponds to one bit of the correspondiriiks, represented as

information vectors. We describe this scalar framework

: . o . L Zgi= >

in Section 1I-B, and use it in our analysis of arbitrarily ’ =

correlated sources in Section V. Note however that the _ t ()_ﬁ?’ _ _

linear decoding strategies of [17] do not apply for thEOr multicast on a network with link delays, memory is

case of arbitrarily correlated sources. needed at the receiver (or source) nodes, but memoryless
We consider both the case of acyclic networks whef®eration suffices at all other nodes [17]. We consider

link delays are not considered, as well as the case Wit delay links, modeling links with longer delay as

general networks with cycles and link delays. The formdPks in series. The corresponding linear coding equa-

case, which we catflelay-free includes networks whosetlons are

Iinks are assumed to have zero delay, as well as networks Yi(t+1) = Z ai; Xi(t)

with link delays that are operated in a burst [19],

bgi1Y].

pipelined [26] or batched [3] fashion, where information i a@=o}

is buffered or delayed at intermediate nodes so as to + Z JiYi(t)

be combined with other incoming information from the (L= d(h)=o0(7)}

same batch. A cyclic graph with nodes and rater K ,

may also be converted to an expanded acyclic graph wichﬂvi(t +1) = Z bg,i(u)Zp(t —u)

kv nodes and rate at leagt — v)r, communication on u=0 i

Whlc_h can be emulated overtime steps on the original i Z %i’l(um(t — )
cyclic graph [1]. For the latter case, we consider general (- d)=p) u=0

networks without buffering, and make the simplifying ) ,
assumption that each link has the same delay. where X, (1), Y;(t), Z.(t), bz ;(t) and bz ; ,(t) are the
We use some additional definitions in this paper. Link@/ues of the corresponding variables at timeespec-

I is anincident outgoing linkof nodew if v = o(1), and tively and p represents the memory required. These
an incident incoming linkof v if v = d({). We call an €quations, as with the random processes in the network,

incident incoming link of a receiver nodeterminal link ~ ¢an be represented algebraically in terms of a delay
and denote byT; the set of terminal links of a receivervariable D:

B. A pathis a_subgraph of the network consisting of a Y;(D) = Z Da; ; X;(D)
sequence of linkey, ..., e, such thatd(e;) = o(e;y1), (i : a(i)mo(s)}
o(e1) # d(ex) andd(e;) # d(e;) Vi # 7, and is denoted
(e1,...,ex). A flow solutionfor a receivers is a set + Z ‘ Dfi;¥i(D)
of links forming r link-disjoint paths each connecting a {1:dh=0(5)}
different source ts. Zg (D) = > (D)D)
{1+ d()=p}
B. Algebraic network coding where
) ) 12 D“+1b”~ (u)
In the scalar algebraic coding framework of [17], bsiu(D) = u=0 B,il (1)

the source information processes, the receiver output 1=k Dut bl (u)
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and has full rank » for each receiver8,,k = 1,...,d,

o thenBg, = (B, GTAT) !By, satisfiesAGBY = I,
t ~ ~ . . k .
Xi(D) = > Xi(t)D and (A,G,Bg,,...,Bg,) is a solution to the multi-
=0 cast connection problem in the same field. A multicast
= connection problem for which there exists a solution
(D) = Y Vi()D',  Y;(0)=0 0

in some fieldFF, or F,(D) is calledfeasible and the

0o corresponding connection requirements are said to be

Zsi(D) = Z Zﬁﬂ.(t)pt, Z54(0) = 0. feasible for the network. In subsequent sections where
t=0 we consider choosing the value @&, G) by distributed

random coding, the following definitions are useful: if

for a receiverg;, there exists some value &g, such

that AGB}, has full rankr , then (A, G) is a valid

The coefficienta; ;, f1,;, b5} can be collected into
r x |€| matrices

A— { (aij)  inthe acyclic delay-free case  network code forg;; a network code(A,G) is valid
(Dai;) in the general case with delays  for a multicast connection problem if it is valid for all
andBg = (bg;), and the|€| x |€] matrix receivers.

The ith column of matrixAG specifies the mapping
from source processes to the random process onilink
We denote byG the submatrix consisting of columns
whose structure is constrained by the network. A paif G corresponding to a set of linky.

(A,F) or tuple (A,F,Bg,,...,Bg,) can be called a

“ns\?r nletwork que. | i | lated mappingA G, from the source processes to the random
e also consider a class of linearly correlated sour - - - -
y Cﬁﬁ)cesses on its terminal links. The entriesAdb7, are

modeled as given linear combinations of underlyiNg., o elements af, in the acyclic delay-free case, and
independent processes, each with an entropy and Qi nomials in delay variabled in the case with link
rate of one bit per unit time. To simplify the notatiorye|ays 1 the latter case, the number of terms of these
in our subsequent development, we work with thesg, nomials and the memory required at the receivers

underlying independent processes in a similar manngt e nq on the number of links involved in cycles, which
as for the case of independent sources: jitrecolumn act like memory registers, in the network

of the A matrix is a linear functiory_, ay jx* of given _ _ _
v We use the notational convention that matrices are

column vectors:é‘? S Wherexg? specifies the mapping )
from » underlying independent processes to thi named with bold uppercase letters and vectors are named
é/vith bold lowercase letters.

source process at(j).2 A receiver that decodes thes
underlying independent processes is able to reconstruct
the linearly correlated source processes.
For acyclic graphs, we assume an ancestral indexing
of links in &, i.e. if d(I1) = o(l3) for any linksly, 5, then [1l. I NSIGHTS FROM BIPARTITE MATCHING AND
I has a lower index thafy. Such an indexing always NETWORK FLOWS
exists for acyclic networks. It then follows that matrix
F is upper triangular with zeros on the diagonal.

F_ (f15) ?n the acyclic delay—frge case
(Df1;) inthe general case with delays,

For a receivers to decode, it needs to know the

let G = (I — F)*1.3 The mapping from As described in the previous section, for a multicast
source processes$X; X,] to output Iorocessesconnection problem with independent or linearly corre-
yeooy Xy : o
(Zs. Zs,] at a receiverd is given by the transfer lated sources, the transfer matrix condition of [17] for
Ly eeey ,r

matrix AGB? [17]. For a given multicast connectionth€ problem to be feasible (or for a particular linear
problem, if some network codeA, G, Bg, ..., By, ) in network code defined by matricés\, G) to be valid

a fieldF, (or F, (D)) satisfies the condition thaxGB7, for the connection problem) is that for each receiger
P the transfer matriAGBg has nonzero determinant. The

2We can also consider the case wherg € Fj.. by restricting following result shows the equivalence of this transfer
network coding to occur iff,, ¢ = 2™". matrix condition and the Edmonds matrix formulation
*For the acyclic delay-free case, the sequefice F)~' = I+ for checking if a bipartite graph has a perfect matching

F + F? + ... converges sinc& is nilpotent for an acyclic network. s
For the case with delay$I — F) ' exists since the determinant of(e'g" [23]). The problem of determining whether a

I—F is nonzero in its field of definitioff»(D, ..., f; ;....), as seen bipartite graph has a perfect ma_tChing is a_C_IQSSicaI
by letting D = 0. [17] reduction of the problem of checking the feasibility of
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an s — ¢t flow [15]*. This latter problem can be viewedhas a sef{z of r terminal links for which
as a degenerate case of network coding, restricted to the T
binary field and without any coding; it is interesting to Z \A{zn,...,z,.l}\ Hg(gj) £ 0
find that the two formulations are equivalent for the M@I&soint panse, = (111, 11,,). .. =1

general case of linear network coding in higher grdef'- - trmr) ollin) = ali, lin, € Hs}

fields. where Ay, ;.1 is the submatrix ofA consisting of
Lemma 1:(a) For an acyclic delay-free networkJinks {l11,...,{,1}, and
the determinant of the transfer matrd; = A(I —

€1,62J€2,63 * ** JEK_1,€Ek If k:> ].
(6 = { Joverteses S

—1RT i : _
F)~'Bj for receiverj is equal to g(&) = i1

M| = (—1)"UEHD M, | is the product of gains on the pafh= (eq,...,ex). The
sum is over all flow solutions from the sources to links

here M, — A s th di in Hg, each such solution being a setofink-disjoint
where Mz = 1 1_F Bg IS the corresponding paths each connecting a different source to a different
Edmonds matrix. link in Hg.
(b) For an arbitrary network with unit delay links, the Proof: See Appendix A. |

transfer matrixA (D)(I-F (D))~ 'Bj(D) for receiver8 | amma 1 leads to the following upper bound on

is nonsingular if and only if the corresponding Edmondg,jired field size for a feasible multicast problem,

matrX(m 0 which tightens the upper bound gf> rd given in [17],
T is nonsingular. wherer is the number of processes being transmitted in
I-F(D) B(D)
the network.
_ o . Theorem 1:For a feasible multicast connection prob-
The usefulness of this result is in making apparem with independent or linearly correlated sources and
various characteristics of the transfer matrix determina&lt receiverS, in both the acyc”c delay_free case and

polynomial that are obscured in the original transfehe general case with delays, there exists a solution
matrix by the matrix products and inverse. For instancea | F, Bg,,...,Bg,) in finite field F, if ¢ > d.
the maximum exponent of a variable, the total degree proof: See Appendix A. ]

of the polynomial, and its form for linearly correlated

sources are easily deduced, leading to Theorems 1 and é/Vork done by [14], [26] independently of and concur-

. rently with the initial conference publication of this result
For the acyclic delay-free case, Lemma 2 below | . .

) . showed, by different means, the sufficiencyqof d for
another alternative formulation of the same transfer ma-

trix condition which illuminates similar properties of the e acyclic delay-free case. Subsequent work by [7] gave
. . i > /24 —
transfer matrix determinant as Lemma 1. Furthermorae tighter bound ofy > /2d — 7/4+ 1/2 for the case of

S . I two sources and for some configurations with more than
by considering network coding as a superpaosition of flow

: : : WO sources that satisfy some regularity conditions.
solutions, Lemma 2 allows us to tighten, in Theorem é fy 9 y
the bound of Theorem 2 for random network coding on
. : . . V. RANDOM LINEAR NETWORK CODING FOR
given acyclic networks in terms of the number of Imksl’\IDEPE'\”DE’\|T OR LINEARLY CORRELATED SOURCES
in a flow solution for an individual receiver. _ _ _ _
Lemma 2:A multicast connection problem withr In this section, we consider random linear network

sources is feasible (or a particular network céde F) c_o_des in which some or all of the network code coef-
is valid for the problem) if and only if each receivgr ficients{a;; (aw; for linearly correlated sourcesjj,; }

are chosen independently and uniformly olfgr where

“The problem of checking the feasibility of an- ¢ flow of sizer ¢ Is greater than the number of receivelrs

on graphG = (V, £) can be reduced to a bipartite matching problem The next two results cover the case where some co-
by constructing the following bipartite graph: one set of the bipartitefficients are fixed instead of being randomly chosen, as
graph has: nodesus, ..., u,, and a nodey; corresponding to each |ong as there exists a solution to the network connection
link I € £;the other set of the bipartite graph hasodesws, .. . , w,, bl ith th | for th fixed ffi
and a nodey; > corresponding to each linke £. The bipartite graph p.ro em W! e Sa_'me values (?I’ _ese Ixed coeill-
has links joining each node; to each nodey ; such thato(l) = s, Cients. For instance, if a node receives linearly dependent
a_1|ink_jc_>ir_1ing nodev; ; to the correspond_ing node,g foralll €& processes on two linkg, Is, it can fix fll,j =0 for all
links joining nodevy. t0 v;1 for each pairl, j) € £ x & such that o 146ing linksj. Nodes that cannot determine the appro-
d(l) = o(7), and links joining each node; to each nodey > such . . . i
that d(l) = ¢. The s — * flow is feasible if and only if the bipartite Priate code coefficients from local information choose
graph has a perfect matching. the coefficients independently and uniformly frdm.

Proof: See Appendix A.
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Theorem 2:Consider a multicast connection problenthe maximum number of links with associated random
on an arbitrary network with independent or linearlgoefficients in any set of links constituting a flow solution
correlated sources, and a network code in which somefor any receiver.
all network code coefficientga; ;, oy j, f1;} are chosen Proof: See Appendix B. u
uniformly at rgn_dom from a fir'1it'e fielﬁq whereg > d, The next bound is useful in cases where analysis of
and the_remalnmg_code coefiicients, if any, are fixed. éfonnection feasibility is easier than direct analysis of
there exists a solution to the network connection probl

ith th lues for the fixed cod Hicient themndom linear coding.
h € Same values lor the lixed code CoetliCIents, ety 5am 4:Consider a multicast connection problem

]Ehetﬂrobabg:ty that tth:a raqdorz ne;worrlf COd? 'Sthva“g/ith independent or linearly correlated sources on an
or the proviem ,'S a east N /a)", Wheres) IS the acyclic graphg. The probability that a random linear
number of links; with associated random coefﬂuent%etwork code inF, is valid for the problem org is
{aw’o"‘fﬂ’_flﬂ}' _ greater than or equal to the probability that the same
Proof: See Appendix B. B connection requirements are feasible on a modified graph

The code length: is the logarithm of the field size formed by deleting each link of with probability d/q.
q = 2“. It affects computational complexity and delay,  Proof: See Appendix B. u

since algebraic operations are performed on codewordshe above theorem is used in obtaining the following
of lengthu. Note that the bound, derived using Lemma }esult showing how spare network capacity and/or more
is tighter than the bound df — dn/q obtained by direct reliable links allow us to use a smaller field size to
application of the Schwartz-Zippel Theorem (e.g., [23Burpass a particular success probability.
which only considers the total degree of the polynomial. Theorem 5:Consider a multicast connection problem
The corresponding upper bound on the error probabili§y, an acyclic networlg with independent or linearly
is on the order of the inverse of the field size, so the errggrrelated sources of joint entropy rateand links which
probability decreases exponentially with the number | (are deleted from the network) with probability Let
codeword bitsu. y be the minimum redundancy, i.e. the original connec-
The bound of Theorem 2 is very general, applyingon requirements are feasible on a network obtained by
across all networks with the same number of receivedeleting anyy links in G. The probability that a random
and the same number of links with associated randdimear network code if¥, is valid for a particular receiver
code coefficients, without considering specific netwollk at least
structure. However, it is intuitive that having more re-

r+
dundant capacity in the network, for instance, should i <T+y> (1 —p— 1_p>m
increase the probability that a random linear code will =\ T
be valid. Tighter bounds can be obtained by taking 1 L\ Ttyv—=
into account more specific network structure. Three such (1 - (1 —-p— _p> >
bounds, for the acyclic delay-free case, are given below. q

We have not proven or disproven whether they extendfhere 1, is the longest source-receiver path in the net-
networks with cycles. work.

The first tightens the bound of Theorem 2 for  proof: See Appendix B. ]
the acyclic delay-free case, by using in its derivation
Lemma 2 in place of Lemma 1. It is used in Section VI
to derive a bound on the probability of obtaining a valid V- RANDOM LINEAR NETWORK CODING FOR
random network code on a grid network. ARBITRARILY CORRELATED SOURCES

Theorem 3:Consider a multicast connection problem So far we have been considering independent or lin-
on an acyclic network with independent or linearlgarly correlated sources. We next consider transmission
correlated sources, and a network code in which someadr arbitrarily correlated sources, using random linear
all network code coefficientga; ;, ax j, fi ;} are chosen network coding, over networks where compression may
uniformly at random from a finite fiel#, whereq > d, be required.
and the remaining code coefficients, if any, are fixed. If Analogously to Slepian and Wolf [28], we consider
there exists a solution to the network connection probletme problem of distributed encoding and joint decoding
withthe samevalues for the fixed code coefficientsf two sources whose output values in each unit time
then the probability that the random network code eriod are drawn i.i.d. from the same joint distribution
valid for the problem is at leagil — d/q)", wherer/ is Q. The difference is that in our problem, transmission
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occurs across an arbitrary network of intermediate nodes
that can perform network coding. In the special case of a
network consisting of one direct link from each source to
a common receiver, this reduces to the original Slepian-
Wolf problem.

We consider a vector linear network code that operates
on blocks of bits. Linear coding is donelia over blocks
consisting ofnr; bits from each source&;, wherer; is

P < exp{ - nr)r(n}r/l (D(PXYHQ)

)

1
+ ‘m3(1 — ZlogL) — H(XY)
n

)

22122 Jog(n + 1)}

the bit rate of sourceX;. Each node transmits, on eackynd x, v are dummy random variables with joint distri-
of its incident outgoing linkd, nc; bits for each block, pytion Pyy-.

formed as random linear combinations of corresponding  proof: See Appendix B. m

source bits originating at that node and bits transmitted
on incident incoming links, if any, as illustrated in
Figure 2. An a-decoder (which may be a minimum
entropy or maximum@-probability decoder) [4] at a
receiver maps a block of received bits to a block of de-
coded values that has minimum entropy or maximgm
probability among all possible source values consistent
with the received block.

We bound the probability of decoding error at a
receiver, i.e. the probability that a block of source
values differs from the decoded values. Specifically, we
consider the case of two sources whose output values
in each unit time period are drawn i.i.d. from the same
joint distribution@. Let m; andms be the minimum cut

The error exponents

1 .
e = r)?}?(D(PXYHQ)

1
+ ‘m1(1 — —logL) — H(X|Y)
n

)
)

2 .
et = I)I(%I}<D(PXYHQ)

1
+ ‘mg(l — —logl) - H(Y|X)
n

capacities between the receiver and each of the sources ¢® = min (D(PXYHQ)

respectively, and letns be the minimum cut capacity
between the receiver and both sources. We denoté by
the maximum source-receiver path length. Our approach
follows that in [4], whose results we extend. As there,

1
+ ‘m3(1 — —logL) — H(XY)
n

)

the type P, of a vectorx € F3 is the distribution orF;  for general networks reduce to those obtained in [4] for
defined by the relative frequencies of the element®.0f the Slepian-Wolf network wherg = 1, m; = Ry, ms =

|
al=]

<5 <B

= 1 (D(P)(yHQ) + ‘Rl - H(X’Y)’+)

)

= min (D(Pxy|Q) + [R2 — H(Y|X)[T)

=B

)

=

in x, and joint typesP, are analogously defined. Ry, m3 = R1 + Ro:
Theorem 6:The error probability of the random linear .
network code is at moszg’:1 p., where €
62
1 .
pe < exp{ — nmin (D(nyllQ) 3

1
+ ‘ml(l — —log L) — H(X|Y)
n

)

+221472 Jog(n + 1)}

|
=5
><

= min (D(Pxy||Q) + |R1 + Re — H(XY)|T).

)

. BENEFITS OFRANDOMIZED CODING OVER
ROUTING

Network coding, as a superset of routing, has been

) shown to offer significant capacity gains for networks
Pe < exp{ —niin D(Pxyl|Q) with special structure [26]. For many other networks,

5

1
+ ‘mg(l — —logL) — H(Y|X)
n

network coding does not give higher capacity than cen-
+ tralized optimal routing, but can offer other advantages
when centralized optimal routing is difficult. In this

section we consider two types of network scenarios in
+2mH2r2 og(n 4 1) which distributed random linear coding can be particu-
larly useful.
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A. Distributed Settings Proposition 1: For the randomized flooding scheme

In networks with large numbers of nodes and/d?ﬁF’ the probabil_ity that a receiver Ioc_ated at grid po-
changing topologies, it may be expensive or infeasibhdion (x,y)_ relative to the source receives both source
to reliably maintain routing state at network node®OCESSes Is at most

Distributed randomized routing schemes have been pro- 1+ 2||:E\f|y||+1(4min(|:p\,|y\)fl ~1)/3
posed [2], [27] which address this kind of issue. How- Sl Iy—2
ever, not allowing different signals to be combined can Proof: See Appendix C. |

impose intrinsic penalties in efficiency compared to using Proposition 2: For the random coding scheme RC

neéworkdcodlng. imol e th bl ¢ OI_the probability that a receiver located at grid position
onsider as a simple example the probiem of send y) relative to the source can decode both source

two processes from a source node to receiver nOdeSpchesses is at leabt — 1/¢)2@+u-2),

unknown locations on a rectangular grid network, shown Proof: See A dix C -

o o . : ppendix C.

in Figure 3. For simplicity, we analyze the acyclic delay-

free case, which may correspond to synchronized, burstfable I gives, for various values afandy, the values

or pipelined operation where each transmission at a nd¥fethe success probability bounds as well as some actual

v occurs upon reception of transmissions on all incideRtobabilities for the random flooding scheme RF when

incoming links ofwv. x and y are small. Note that an increase in grid size
Suppose we wish to use a distributed transmissifi@m 3 x 3 to 10 x 10 requires only an increase of two

scheme that does not involve any coordination amof#tycodeword length for the random coding scheme RC

nodes or routing state. The network aims to maximiZ8 obtain success probability lower bounds close to 0.9,

the probability that any node will receive two distinctvhich are substantially better than the upper bounds for

processes, by flooding in a way that preserves mess&de

diversity, for instance using the following random flood-

ing scheme RF: B. Dynamically Varying Connections

o The source node sends one process in both direc-, L . .
. . ) Another scenario in which random linear network
tions on one axis and the other process in both

oo . : .coding can be advantageous is for multi-source multi-
directions along the other axis, as illustrated in . : . .
Figure 3 cast with dynamically varying connections. We compare

L . . distributed randomized coding to an approximate online
« A node receiving information on one link sends th g PP

. . . L Steiner tree routing approach from [16] in which, for
same information on its three outgoing links (these . . . .
are nodes along the arid axes passing through 4 %ch transmitter, a tree is selected in a centralized fash-

9 9 P 9 9" 3R, since the complexity of setting up each connection
source node).

o A node receiving information on two links sendsiS a s_ignificant consideration in the dynz_;tmic scenario we
one of the incoming processes on one of its tw%on3|der, Wwe use one tree per conngctlon; more CO”.‘F""
outgoing links with equal probability, and the Othec:ated online routing applfoaches using multiple Steiner
process on the remaining link ' frees may be able to achl_eve a sma!ler_ performance gap
' compared to network coding, but this is not within the
For comparison, we consider the same rectangu&rope of our paper.
grid problem with the following simple random coding  gjnce sophisticated routing algorithms are difficult to

scheme RC (ref Figure 3): _ _analyze, we use a simulation-based approach. We ran
« The source node sends one process in both dirgGals on randomly generated graphs with the following
tions on one axis and the other process in bofarameters: number of nodes number of sources

directions along the other axis. _ r, number of receiversi, transmission range, and
« A node receiving information on one link sends thenaximum in-degree and out-degréeFor each trialn
same information on its three outgoing links. nodes were scattered uniformly over a unit square. To

o A node receiving information on two links sends @reate an acyclic graph we ordered the nodes by their
random linear combination of the source processgsordinate and chose the direction of each link to be from
on each of its two outgoing links. the lower numbered to the higher numbered node. Any

pair of nodes within Euclidian distangeof each other

5 i i i i i . . .
This simple scheme, unlike the randomized flooding scheme Rjas connected by a link, up to the maximum in-degree
leaves out the optimization that each node receiving two linearly in-

dependent processes should always send out two linearly indepen@l out-degree of the n_OdeS involved. The receiver nodes
processes. were chosen as thé highest numbered nodes, and
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| Receiver position | (2,2) [ (3.3) | (44) | (10,10)| (2,3) | (9,10)]| (2,4) [ (8,10) |
actual 0.75 | 0.672| 0.637 - 0.562 - 0.359 -
upper bound 0.75 | 0.688| 0.672| 0.667 | 0.625| 0.667 | 0.563| 0.667

Fs4 lower bound| 0.772| 0.597 | 0.461| 0.098 | 0.679| 0.111 | 0.597 | 0.126
RC | [Fy6 lower bound| 0.939| 0.881| 0.827| 0.567 | 0.910| 0.585 | 0.882| 0.604

Fos lower bound| 0.984 | 0.969 | 0.954| 0.868 | 0.977| 0.875| 0.969| 0.882
TABLE 1

SUCCESS PROBABILITIES OF RANDOMIZED FLOODING SCHEMIRF AND RANDOM LINEAR CODING SCHEMERC. THE TABLE GIVES
BOUNDS AS WELL AS SOME ACTUAL PROBABILITY VALUES WHERE EXACT CALCULATIONS ARE TRACTABLE

RF

source nodes were chosen randomly (with replacement)rhese simulations do not attempt to quantify precisely
from among the lower-numbered half of the nodes. Thie differences in performance and overhead of random
parameter values for the tests were chosen such thatlthear coding and online routing, but are useful as a pre-
resulting random graphs would in general be connectiéahinary indication. With regard to throughput and block-
and able to support some of the desired connectioigy probability, the simulations show that random linear
while being small enough for the simulations to runetwork coding outperforms the Steiner tree heuristic
efficiently. on a non-negligible set of randomly constructed graphs,
Each trial consisted of a number of time slots. Imdicating that when connections vary dynamically, cod-
each time slot, a source was either on, i.e. transmittifigg can offer advantages that are not circumscribed to a
source information, or off, i.e. not transmitting sourcéew carefully chosen examples. With regard to overhead,
information. For the approximate Steiner tree routindpe additional overhead of network coding comes from
algorithm, each source that was on was associated wiitie linear coding operations at each node, the decoding
a Steiner tree, link-disjoint from the others, connectingperations at the receivers, and the coefficient vectors
it to all the receivers. sent with each block or packet. Each of these types of
At the beginning of each time slot, any source thaverhead depends on the coding field size. Our theoreti-
was on stayed on with probability— po or else turned cal bounds of previous sections guarantee the optimality
off, and any source that was off stayed off with probef random linear coding for large enough field sizes, but
ability 1 — po or else underwent, in turn, the followingthey are tight only for worst-case network connection
procedure: problems. The simulations illustrate the kinds of field

. For the approximate Steiner tree routing algorithn$i2€S needed in practice for networks with a moderate

the algorithm was applied to search for a Stein&umber of nodes. To this end, we use a small field size
tree, link-disjoint with the Steiner trees of othefhat allows random linear coding to generally match the

sources that were currently on, connecting thRerformance of the Steiner heuristic, and to surpass it
source to all the receivers. If such a Steiner trd@ Networks whose topology makes Steiner tree routing

was found, the source turned on, using that steirfdifficult. The simulations show the applicability of short
tree to transmit its information to all receivers; if"€Work code lengths of 4-5 bits for networks of 8-12

not, the source was blocked, i.e. stayed off. nodes.
o For network coding, up to three random linear
network codes were chosen. If one of them was VII. CONCLUSION

valid for transmitting information to all receivers \ve have presented a distributed random linear network
from that source as well as other sources that weggging approach which asymptotically achieves capac-
currently on, the source turned on; otherwise, thg,’ as given by the max flow min cut bound of [1],
source was blocked. in multi-source multicast networks. We have given a
We used as performance metrics the frequency @éneral bound on the success probability of such codes
blocked requests and the average throughput, which wése arbitrary networks, showing that error probability
calculated for windows of250 time slots until these decreases exponentially with code length. Our analysis
measurements reached steady-state, i.e. measuremenises insights from network flows and bipartite matching,
three consecutive windows being within a factor of 0.&hich also lead to a new bound on required field size
from,each,other,so,as,to,avoid transient initial startdpr centralized network coding. We have also given
behavior. Some results for various randomly generatgghter bounds for acyclic networks which take into
networks are given in Table II. account more specific network structure, and show how
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TABLE I
A SAMPLE OF RESULTS ON GRAPHS GENERATED WITH THE FOLLOWING PARAMETERSIUMBER OF NODESn, NUMBER OF SOURCES-,
NUMBER OF RECEIVERSd, TRANSMISSION RANGEp, MAXIMUM IN -DEGREE AND OUFDEGREE?. b, AND b. ARE THE RATE OF BLOCKED
CONNECTIONS FOR ROUTING AND CODINGRESPECTIVELY, AND ¢, AND {. ARE THE CORRESPONDING THROUGHPUTS

Parameters Results

nodesn | srcss | rcvrsd [ degi [ rangep [ probpo || Network [ b [t [be | te

154 | 1.46 | 1.55| 1.46
0.72 | 227 | 0.74 | 2.31
0.26 | 2.78 | 0.23 | 2.74
214 | 0.84 | 2.17 | 0.83
0.70 | 2.31 | 0.68 | 2.28
090 | 2.05| 0.71 | 2.26
0.61| 1.43| 0.50| 1.45
1.62| 0.53| 1.52 | 0.54
0.14 | 1.96 | 0.00 | 2.05
1.31| 1.63| 0.71 | 2.28
0.74 | 217 | 0.64 | 2.42
151|154 | 149 161
1.05| 237 | 1.14 | 2.42
1.36 | 2.22 | 1.06 | 2.39
2.67 | 0.87 | 2.56 | 0.89
144 | 1.67| 0.71 | 2.31
0.28 | 2.72| 0.29 | 2.75
0.75| 2.28| 0.73 | 2.31
239 | 1.73 | 2.34 | 1.74
229 | 1.73 | 223 | 1.74
157 | 248 | 1.52 | 251

8 6 1 4 0.5 0.6

10 6 2 4 0.5 0.5

10 9 3 3 0.5 0.7

12 6 2 4 0.5 0.6

12 8 2 3 0.5 0.7

WNERPWNRPWNRPWOWNRPOWONRPWNRERWN P

redundant network capacity and link reliability affect the APPENDIX

probability of obtaining a valid random linear code. _ _
A. Edmonds matrix and flow formulations

Taking a source coding perspective, we have shown Proof of Lemma 1:
that distributed random linear network coding effectivelga) Note that
compresses correlated sources within a network, provid-
ing error exponents that generalize corresponding results [ I —AI-F)"! ] [ A 0 }

for linear Slepian-Wolf coding. 0 I I-F Bg
[ 0 -AI-F)'B}
Finally, two examples of scenarios in which ran- | I-F Bg

domized network coding shows benefits over routing

approaches have been presented. These examples suggest I —AI-F)!

. first  matrix, ,  has
that the decentralized nature and robustness of random 0 I
Ilnegr network _codlng can offer S|gn_|f|cant advantages Eretermlnant 1 So dét OT equals
settings that hinder optimal centralized network control. I-F Bj
0 -AI-F)'B} :
( )" B D which can be

. . . et([ T

Further work includes extensions to non-uniform code \ [ I —F B;
distributions, possibly chosen adaptively or with somf@pPanded as follows:
rudimentary coordination, tq optimize different_perfor- 0 _A(I-F)-1BI
mance goals. Another question concerns selective place- det([ [_F BT s D
ment of random linear coding nodes. The randomized - B
and distributed nature of the approach also leads us (—1)"¥Idet -A(I-F)"'Bf 0
naturally to consider applications in network security. Bg I-F
It wo_uld also be mter_est!ng to cons_lder protocol issues _ (—1)"€def—A(I — F)*lBg)del(I _F)
for different.communication.scenarios, and to compare r(E]11) e
specific coding and routing protocols over a range of = (—1) defA(I-F) "Bj)defI - F)
performance metrics.
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The result follows from observing that dét— F) = 1 the expression is a linear combination of determinants of
since F is upper-triangular with zeros along the maithe form |a,, ...
diagonal. | |

(b) As in part (a), IAGy| = Z aj ...ay
A(D) 0 r(|€]+1) O L) | ‘
det<[ I-F(D) (D) :|> (=) }lLi<#h}Lj<V}'L'J¢ 5}
detA(D)(I - F(D)) 'Bf(D))detI - F(D)) .
> T]eEn.
Since defl — F(D)) is nonzero, the result follows.H (e e j=1
Proof of Lemma 2:Recall that we assume an gvm;JJ;:Qf

ancestral numbering for the links of an acyclic graph. _
For1 < h' < h < |€|, let Sy, be the set of all The result follows by noting that each sét =

sets of integersier, es, ..., e;} such thath’ = e < {e1,€e2,...,er} such thatg(€) # 0 corresponds to a
63 < ... < ey =h LetH = {Iy h.}, where network path consisting of linksy,...,ex; that the
L<hi<.. <h <. ’ ’ condition&;NEy, = B forall j # k, 1 < j,k < rimplies

that the corresponding patlis, . . ., &, are disjoint; and

Ithat‘ah/l coeap

r linearly independent combinations of source processes.
|

Proof of Theorem 1:.By Lemma 1, the transfer ma-

trix determinant[AGBg\ for any receivers is nonzero

if and only if the determinant of the corresponding

Edmonds matrix is nonzero. Thus, we consider the

determinantPz of the latter matrix. Since each variable

Expanding the determinant &G, linearly in theh, " az; (o5 in the case of linearly correlated sourceg);

column using (3), we obtain or b ;; appears in exactly one column of the Edmonds
matrix, the largest exponent of each of these variables

AGy,| . | | in Pg is 1, and the largest exponent of each variable in
H| = hy -~

Let a;, and c;, denote columnh of A and AG
respectively. It follows from the definitions of transfe
matricesA andG = I+ F + F2 + ... thatc;, can be
computed recursively as follows:

cCiT = a (2)

c, = Zcifi,h+ah7 h=2,3,...,/E]. (3

i=1

‘1 | v the productP” = []; P of d receivers’ determinants is
at mostd.
[ For the acyclic delay-free case, we use an induction
= Z Ch, ---Ch,_, €i | fin,  argument similar to that in [17] to show that there exists a
fprsich [ . solution inF,, ¢ > d, such thatP is nonzero. Consider

| | | one of the variablesi; ;, axj, fi; oOr bg,;, denoting

it by &, and considerP as a polynomial in the other
variables with coefficients that are polynomials §n
Since these coefficients have maximum degie¢hey
We proceed recursively, expanding each determinare not divisible by¢] — & . Thus, & can take some
linearly in its columnc, whose indexh is highest, value inF, such that at least one of the coefficients is
using (3) forh > 1 and (2) forh = 1. At each nonzero. Repeating this procedure for each of the other
expansion stage, the expression G4, is a linear variables gives the desired result.
combination of matrix determinants. Each nonzero de-Going from the acyclic delay-free case to the gen-
terminant corresponds to a matrix composed of columesal case with delays, variables ;, oy ;, fi; are re-
{ag,,...,ak,,¢ck,,,...,ck } Such thatk; # k; Vi # j, placed byDa, j, Doy j, Df;; in the Edmonds ma-

=+ Cp, ..-Cp,_, Qp,

and min(k1, ..., ks) > max(kst1,...,k-). Its coeffi- trix, and variablesbg,; become rational functions in
cient in the linear combination is a product of term® b}} (u), b” ;(u) given by Equation (1) in Section II-
fin such thath > kgiq,...,k,, and is of the form B. Each varlablebg 1(u) appears in only one entry of

[[j=1 9(&;) where&; € S, 5, for somej’ € [1,r] and the Edmonds matrix, and each variablg; (u) appears
&ENE =0V i#j. By |nduct|on we have that thesein only one column of the Edmonds matrix in a linear
properties hold for all nonzero determinant terms in threxpression that forms the denominator of each nonzero
course of the expansion. The expansion terminates wreetiry of the column. ThusPs can be expressed as a

www.manaraa.com



13

ratio of polynomials whose numerator is linear in eadn P;. We expressP; in the form P, = 552132 + Ro,

variablea, j, axj, fi;, b/ﬂ,i(u) or b%,z‘,l(“)' Proceeding whereP; is a polynomial of degree at mogy — d; — ds

similarly as for the acyclic delay-free case yields thihat does not contain variablgs or &, and R, is a

result. B polynomial in which the largest exponent ¢f is less

thand,. Proceeding similarly, we assign variabfgsand

) ) ) defined; and P, for i = 3,4, ... until we reachi = k

B. Analysis of random linear network coding where P, is a constant an®r[P;, = 0] = 0. Note that

Lemma 3:Consider a random network cod@A,F) 1 < d; < d < ¢qVi and Zle d; < dn, sok < dn.

in which 7 links j have associated code coefficient8pplying Schwartz-Zippel as before, we have fdr=

a;j, (ax,; for the case of linearly correlated sources), 2, ... k

and/or f;; that are randomly chosen variables. The ( dk’+1> dyo 1
1-— + .

determinant polynomial of the corresponding Edmond$’r [Py = 0] < Pr[Py41 = 0] .

q
has maximum degreg in the (5)

A
I—-F B? - . . .

b B o | _ h Combining all the inequalities recursively, we can show
random variableqa; ;, s j, f1;}, and is linear in eac by induction that

of these variables.
Proof: Each variable{a; ;,ax;, fi;} appears in

matrix

Soiidi Xz dids

Pr[P=0] <

only one column of the Edmonds matrix. Only the - q q?
n columns corresponding to links transmitting random k_lnfil d;
combinations of input processes contain variable terms T+ (DT

q
Now consider the integer optimization problem

S di iy did; N

{aij, anj, fij}-
The determinant can be written as the sum of prod-
ucts of r 4+ |£| entries, one from each row and col-

umn. Each such product is linear in each variable term Maximize f = q q?

{aij,on, fi;}, and has degree at most in these 1%, d;

variables. | L (—1)dmrRiEL

q n
Lemma 4:Let P be a nonzero polynomial in subjectto 0<d; <d<qVic€]l,dy,

F[&1,&2,...] of degree less than or equal ), in dn

which the largest exponent of any varialgleis at most Zdi <dn, and d;integer (6)
d. Values foré&y,&,,... are chosen independently and i=1

uniformly at random froni¥, C . The probability that \;hose maximum is an upper bound B[P = 0).

P equals zero is at modt— (1 —d/q)" for d < g. We first consider the problem obtained by relaxing
Proof:  For any variable; in P, let d, be the e jnteger condition on the variables. Let d* —
largest exponent of; in P. ExpressP in the form {d d* 1 be an optimal solution
PR | 'r] .

dl . .

P =&"Py+ Iy, where Py is a polynomial of degree - por any sets;, of distinct integers fronflegn], let
at mostdn — d; that does not contain variablg, and fo = 1——ic di+ iespizs Gidi ()b s d;
.Rl is a polynomial in Wh.'Ch. the largest exponen_tg_qf We can shovg by inductioqn ohthat0 < fg, <1 fgr any
is less thand;. By the Principle of Deferred Decisions C ) Ay

. . . setSy, of h distinct integers inf1, dn]. If .7, df < dn,
(e.g., [23]), the probabilityPr[P = 0] is unaffected if we : ; i=1"" .

. then there is somd! < d, and there exists a feasible
set the value of; last after all the other coefficients have . v )
. .. Solutiond = {dy,...,dqg,} such thatd; = d} +¢€, € > 0,
been set. If, for some choice of the other coefﬁmentghdd _dfforh i vr\]/hich satisfies
Py # 0, thenP becomes a polynomial ifi[¢;] of degree h =% b
d1. By the Schwartz-Zippel Theorem (e.g., [23]), this f(d) — f(d*)
€

probability Pr[P = 0| P, # 0] is upper bounded by, /q. < > hezi di,
1 =
q q

dn—1 Hh;ﬁi d2> )

So +...4+(-1) s
Pr[P=0] < Pr[P, # (ﬂﬂ + P[P, = 0] Thcils is positive, contradicting the optimality ef*, so
q 2'77 dr = d77
i=1" '
= Pr[P =0 <1 _ dl) + @ (4) Next supposd) < df < d for somed;. Then there
q q exists somel; such that) < d; < d, since ifd; = 0 ord

Next we conside®Pr[P; = 0], choosing any variable for all other j, then> 7. d* + dn. Assume without loss

i=1"

& In Py and lettingds be the largest exponent @b of generality tha) < di < dj < d. Then there exists a
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feasible vectod = {di, ..., dq4,} such thaid; = df —e, suppose random network coding is done over linksj,
dj = di + € ¢ > 0, andd, = d; V h # i,j, which if any, and any linki > j + 1 is deleted with probability

satisfies d/q. Let G; be the graph formed by removing deleted
(dFf — d¥)e — €2 links from G. Let Eg ; be the event that there exist code
f(d) = f(d@") =~ ( — ) coefficients for undeleted links > j + 1 such that the
1 resulting network code is valid for receiver over G;.

qdn—2 To prove the theorem, we need to show that

This is again positive, contradicting the optimalitydf. Fr(Us £s0) < Pr(Us Egje), which follows from
Thus, %, d* = dn, andd? = 0 or d. So exactly Showing thatPr(Us Es;) < Pr(Us Ep,j+1) for j =

n of the variables?; are equal tad. Since the optimal 0,..., €], , _ _

solution is an integer solution, it is also optimal for the For any0 < j < |€] —1, consider any given subset

integer program (6). The corresponding optimyal— of links 5 + 2,.._.,|8] that are plgleted, forming graph
nd — (n) e (_1),7_1£ 1 (1 - 4) . Gj+1, and any given code coefficients for links.. ., j.

¢ N2/ ¢ a 1 We compare the conditional probability of event s ;

Proof of Theorem 2:There aren links j with (when link j + 1 is deleted with probability//q) and

associated code coefficiens,; (ax,; in the case of event|J; Eg ;41 (when random code coefficients are
linearly correlated sourcesy; ;} that are chosen inde-chosen forj + 1). There are three cases:
pendently and uniformly at random ov&y. To check if  Case 1: event); Es; occurs if link j + 1 is deleted.
the resulting network cod@A, F) is valid for a receiver Then event J; Ej3 ; occurs regardless of whether link
#, it suffices to check that the determinant of the corrg-1 1 is deleted, and evett); Ej3 ;1 occurs regardless
sponding Edmonds matrix is nonzero (Lemma 1). Thisf the values of the random code coefficients for link
determinant, which we denote h¥js, is a polynomial j+ 1, since a valid code exists ovég.; with the given
linear in each variabl¢a. ;, ax j, fi;}, with total degree code coefficients for linkg, ..., j and zero coefficients
at mostn in these variables (Lemma 3). The producf; , , for any link k& > j + 1 such thato(k) = d(j + 1).
]_[5 Pg for d receivers is, accordingly, a polynomial in Case 2: ever@B Eg ; does not occur if linkj 41 is
{azj, ou j, fi ;} of total degree at mosty, and in which deleted, but occurs if link+1 is not deleted. Then there
the largest exponent of each of these variables is exists at least one choice of code coefficients for link
most d. Applying Lemma 4,]]; P is nonzero with 1 and any undeleted links> j+1 such that the resulting
probability at leastt — (1 — g " network code is valid for all receivers ovér ;1. Each

The bound is attained with'equality for a network witfhi€Ceiver; has a set of terminal links whose coefficient
independent sources that consists only of link-disjoiECtOrs form a full rank set. Consider the determinant of
paths, one for each source-receiver pair. In this cald® associated matrix, expressed as a polynomjgl .
there is a one-to-one correspondence between links df{if! the code coefficient§as j.1, fij41} for link j +1
variables {a; ;, f,;}. Each of these variables must b@S random variables. From Lemma B ;.1 is linear

nonzero in order for the code to be valid for all receiverly) the variable{a; j1, fi j+1}. The producq ], Ps ;1
for d receivers is a polynomial of degree at masin

_the variable{a, j+1, fi j+1}. If this product is nonzero,
Proof of Theorem 3:By Lemma 2, a given yhe corresponding code is valid. By the Schwartz-Zippel
network code is valid if, for each receives, Theorem, this product takes a nonzero value with prob-
a linear combination of product terms of th%bility 1 — d/q when the variablea, j41, fij41} are
form g gy - Gap fists o fing ity WHETe chosen uniformly at random from a finite field of size

{1, lrin, } form a flow solution tof3, is nonzero. Thys, the conditional probability of evetd, Eg ;41 is
. ) 8 +B,i+1
The product of the corresponding expressions dor 4t |east] —d/q.

receivers has degree less than or equallifg where g5 3: eventJ, £, does not occur regardless of
1" = maxgng, and the largest exponent of any variablg hether link; + 1 is deleted. Then eveh; 3,1 does
is at mostd. Applying Lemma 4 yields the result. not occur regardless of the values of the random code
The same proof holds for linearly correlated sourcesyefficients for link;j + 1, since no valid code exists over
by considering variables;, ; in place of variables; ;. G,.1 with the given code coefficients for links .. . , j.
In all three cases, the conditional probability of event

Proof of Theorem 4Recall that links in an acyclic Uz E,; is less than or equal to the conditional proba-

graph are numbered ancestrally. For< ; < |£|, bility of event{J; Eg ;1.

(1 Xz (1) Il d7L> Denote byps ; be the probability off; ;.
q
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The same proof holds for linearly correlated sources, Thus,pc, > pc,, which is the probability that all links
by considering variables;, ; in place of variables; ;. M on at least of r +y length- paths are not deleted. The

Proof of Theorem 5Note that for any multicast result follows from observing that the probability that the

L
connection problem, the probability that a random nédinks on a path are not deleted ($1 —p)(1— %)) .l
work code is valid for a particular receiver is equal
to the probability that a random network code is vallpand
for a modified connection problem in which is the
only receiver. Consider any single-receiver connecti
problem C' on a graphGc. Let po be the probability
that the connection requirements@fare feasible on the
graph obtained by deleting/ links 6%~ with probability receiver
é—(.l—p)(l—l/q)._Let Yo be the graph”obtalned by The first part of the proof parallels the analysis
eleting links ofG¢ with probabilityp, andG¢, the graph in [4]. The a-decoder ma )

. o P ¢ . ps a vectar of received
obtained by deleting links @, with probability1/q. By N n(ritra)
Theorem 4, the probability that random network Codingocesses onto a vectPrs; x; | € Fy min-
gives a code valid for the connection requirements izing a( Py, ) subject tof x, XQ_]AGT -z FOT a
C on G, can be lower bounded by the probability th inimum entropy decodes(Px,x,) = H (Px;x,), while

the connection requirements are feasibled¥n which or a r:axmum Q-probability decoder.a(Px,) =
is equal topc. —log Q™ (x1x2). We consider three types of errors: in

Consider a single-receiver connection problefy the first type, the decoder has the correct valuexfor

with r source processes originating at a common sou#&lét outputs the wrong value foty; in the second, the

node, on a grapl§c, consisting ofr + y link-disjoint ecoder r|1as fthe corret(;]t v;:ug fﬁ]ﬁ deI ogtputs tthet
source-receiver paths of length. Let Cy be any wrong value forxy, In the third, the decoder oulputs

other single-receiver connection problem withsource wrong values for botix; andx,. The error probability
processes on a-redundant graphGe, with source- is upper bounded by the sum of the probabilities of the

3
receiver paths of length at mobt Suppose links of eachthree .types 9f _errorsZZ.:l Pe: _
graph are deleted with probability— (1 — p)(1 — 1/q). As in [4], (joint) type of sequences are considered as

We show by induction omy that pc, > pe, V y,r, L. (joint) distributionsPx (PXy, etc.) of dummy variables
Fori — 1,2, we consider a s€®; of links in graphGe, X,Y, etc. The set of different types of sequence&n

. k, . -
forming r- link-disjoint source-receiver paths sufficient t¢S denoted byP(I3). Defining the sets of types

Proof of Theorem 6We consider transmission, by
om linear network coding, of one block of source
bits, represented by vectrx; xo ] € Fy nritr2) The
?ransfer matrix AGs specifies the mapping from the
vector of source bit§ x; x3 | to the vectorz of
processes on the s&t of terminal links incident to the

transmit all processes to the receiver. We distinguish two {Pygyy € PES x Fy™ x Fy™ x Fy™) |
cases: %
X # X, Y 1=1
Case 1: None of the links i®; are deleted. In this (P # T(IF’"’% x FI7 x T x [0 |
case the connections are feasible. P = %X § Y £Y) =9
Case 2: There exists some ligke P; that is deleted. nry nry nry o mnr
{P € P(Fy" x F3™ x Fy™ x F3™) |
Then we have XXYY
XX, Y4Y} i=3

Pr(success = Pr(case ]

sequences
+ Pr(case 2Pr(succesgase 2 (retra)
n(r1—T7re
— 1—Pr(case 2 Txy = {[x1 x]el, |
(1 — Pr(succesgase 2). Pxyx, = Pxy'}
. . Tooivy (X1X2) = {[ % % | € FAFr2)
SinceP; has at least as many links ®s, Pr(case 2i = XY | Xy \ =142 122 2
1) > Pr(case 2¢ = 2). Thus, if we can show that Pexaxs = Piyxy}
Pr(succesgase 2¢ = 1) < Pr(succesgase 2i = h
2), the induction hypothesi®r(success = 1) < we have
Pr(succesg = 2) follows.
1 ~ o~
For y = 0, the hypothesis is true sincePe = Z Z Q" (x1x2) Pr | 3(x1,%x2) €
Pr(succesgase 2i = 1) = 0. Fory > 0, in case 2 we Pygyy €Pn:  (xixa) €

a(Pgy) < a(Pxy) TXY

can.remove linkisleaving.a(y—1)-redundant grapBc, .
By the induction hypothesis, the probability of success Teyvixy(xaxz) st x1 —x1 0 JAGr =0
for Ge, Is less than or equal to that foic, .
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Z Q" (x1x2)

PL. (x1,%x2) € Txy

min ZPr([ X] — X1

(X1,%2) €
T

0 JAG7 =0) , 1}

%vxy (x1%2)

p; < exp { —-n min
P pl

1 -
’— log P, — H(X|XY)
n

16

to obtain

(DPxrliQ) +

xxyy € P
a(Pgy) < a(Pxy)

+

) 4 2211472 Jog(n 4 1)}

Similarly, )
p; <exp{ — n min (D(PXyHQ) +
X§YY
TIED DD S
PXXYY IS fP?L : (x1,%x2) € Txy a(PXY)
a(Pyy) < a(Pxy)

min g Pr([O X9 — Xo ]AGT:O) ,1}
(¥1,%2) €
‘TXY\XY(xl)(Z)

pi < Z Z Q" (x1x2)

P3 . (x1,%x2) € Txy
o

1 -
’— log Py — H(Y|XY)
n

_l’_

) 4 271272 og(n 4 1)}

pg Sexp{ —-n min (D(PXYHQ)—i—

O‘(ny) <
a(Pxy)

+

)+

1 s
’—long — H(XY|XY)
n

min ZPr ([ X] —X| X9 — Xg ]AG7:0)

(X1,%2) €
Ty xy (x1x2)

22r1+2r2 log(n + 1) }7

’ 1} where the exponents and logs are taken with respect to
base 2.
where the probabilities are taken over realizations of For the minimum entropy decoder, we have
the network transfer matritA G+ corresponding to the
random network code. The probabilities o(Pyy) < a(Pxy) =

H(X|XY) < H(X|Y) <H(X[Y) fory =Y
P1 = PI‘([Xl—X~1 O]AG’T:O) (Y|XY)§H( ‘~2§ ( | ) forX =X
P, = Pr([0 xy—% JAGs =0) H(XY|XY) < H(XY) < H(XY)
Py = PI‘([ X1 — X1 X9 — X ]AGTZO) which giVGS

for nonzerox; — x1,x9 — Xy can be calculated for a Pi < exp
given network, or bounded in terms ofand parameters
of the network as we will show later.

As in [4], we can apply some simple cardinality
bounds

—nin (D(PXYHQ) +

)

—_ ——

‘—logPl — H(X|Y)
n

4221472 Jog(n + 1)} (8)
P < (n1)T
2 or1+2ry
|an| < (n + 1) . pg <exp{ — nmin D(nyﬂQ) +
T < H(XY 1 *
[Txy| < exp{nH(XY)} ‘longH(Y|X)

and the identity +2M17+22 Jog(n + 1)} (9)

Q"(x1x2) = exp{-—n(D(Pxy||Q) + H(XY))},

5 )
2 < exXp{ —nmin D(nyHQ) +
(x1,%2) € Txy (7) { Xy (
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1
—Zlog Py — H(XY)
n

)

42222 Jog(n 4 1) } (10)

We next show that these bounds also hold for the
maximum @Q-probability decoder, for which, from (7),

a(Pgy) a(Pxy) = D(Pgy||Q) + H(XY)

Fori=1,Y =Y, and (11) gives

D(Pgy||Q) + H(X|Y) < D(Pxy||Q) + H(X[Y).

(12)

We show that

1 ~
min (D(PXYHQ) + ’— log P, — H(X|XY)
Pygyy €Ph: n

(Pgy) <

a(Pxy)

@

1
> min_ (D(nyucz) ¥ ]—nlogpl ~ H(XY)

)

xxyv €Pn:
a(Pgy) <
a(Pxy)

1
> min | D(P ——log P, — HX|Y
_%1( (Prv[lQ) + |-+ log Py~ H(XIY)

by considering two possible cases for adj, X,V

satisfying (12):
Case 1:—1log Py — H(X|Y) < 0. Then

1 5 +
D(PyIIQ) + |- Tow Py~ HUXIY)

1 +
> D(Pxy||Q) + ’_n log P, — H(X|Y)

1
> mi —— —
> min (D(nyHQ) + ‘ ~log Py — H(X|Y)

1
Case 2.—-log PL — H(X|Y) > 0. Then

> D)+ (~+ o Py — HXY) )

V
S
9
<
)
_l_
/?
\
5
o
~

1 +
— D(PeyllQ) + |-2loxPr HUNIY)

<
< D(Pxyl||Q)+ H(XY). (11)

- H<X|Y>) by (12)

17

which gives

1 5 +
D(PYIIQ) + |- low Py — HUXIY)

1 1 N
> 3 D(PXY||Q)+’—nlogpl—H(X|Y)
1 +
+D(Pyy|1Q) + |1 log Py — H(XIY)
1 1 +
> 5 |D(Pxy[IQ) + |~ log P — H(X]Y)
+

1 ~
+D(Pgy1IQ) + \—n log P, — H(X|Y)

1
> min [ D(P _Zlog P, — H(X|Y
> §¥1< (XyHQ)Jr‘ S log Py (X[Y)

\

1 -
min (D(PXY|Q) + ‘— log Ps — H(XY|XY)
n

A similar proof holds fori = 2.
For i = 3, we show that

3 .
Pygvy €Pn:
alPxy) <

a(Pxy)

+>
1 Rt
> v (D(ParllQ)+ |-+ lo Py — H(XY)
Pygyy € P53 n
+>
by considering two possible cases for afiy X,Y,Y

a(Pgy) <
a(Pxy)
satisfying (11):
Case 1:—1log Ps — H(XY) < 0. Then

1
> mi _Z —
> min (D(PXyHQ) + ‘ - log Ps — H(XY)

+
D(PxylIQ) + |- log Py - HIXT)

+
> D(Pxyl|@Q) + '—:Llong - H(XY)

1
> min [ D(P ——log Ps — H(XY
ng;l( (Pa[lQ) + |1 log Py~ H(XY)

+>
Case 2:—1log P — H(XY) > 0. Then
+

1 -
D(Pxy||Q) + ’—n log P3 — H(XY)

v

D(Pxy||Q) + <—:L log P5 — H(f(f/))

> D(PgyllQ) + (—jblog Py H(XY)) by (11)

1 +
— DPeyllQ)+ |- 1o Py~ H(XY)

www.manaraa.com



which gives
+

D(Pxy||Q) + '—:L log Ps — H(XY)

_l’_

1 1 -~
> — |D(Pxyl||Q) + ‘—nlong — H(XY)

2

1 +
+D(P)~(1~/HQ) + ’—nlngg - H(XY)

1
> i —— —
> min (D(PXyHQ) + ‘ - log Ps — H(XY)

\

Here the analysis diverges from that of [4], as we
consider general networks instead of the simple Slepian-

Wolf network. We bound the probabilitieB; in terms
of n and the network parameters;,: = 1,2, the

minimum cut capacity between the receiver and source

18

Pr(case 2 forG;). Therefore, if we can show that
Pr(E(G])|case 2 > Pr(E(G;)|case 2, the induction
hypothesisPr(E(G!)) > Pr(E(G;)) follows.

For m; = 1, the hypothesis is true since
Pr(E(G])|case 2 = 1. Form; > 1, in case 2, removing
the link [ leaves, forgG!, the effective equivalent of a
graph consisting ofn; — 1 node-disjoint length- paths,
and, forg;, a graph of minimum cut at least; — 1. The
result follows from applying the induction hypothesis to
the resulting graphs.

Thus,Pr(E(G!)) gives an upper bound on probability
P

B

A
VR
=
|
—
-
|

)
:"—‘
b
N———
3

(=)
< — .

X, m3, the minimum cut capacity between the receiveSubstituting this into the error bounds (8)-(10) gives the

and both sources, anfl, the maximum source-receiverdesired result.

path length.
Let G; and G, be subgraphs of grapf consisting

of all links downstream of sources 1 and 2 respectivefy, Random flooding vs. random coding on a grid

where a link! is considered downstream of a soutke
if a(i) =
source too(l). Let G3 be equal tag.

Proof of Proposition 1:To simplify notation, we

o(l) or if there is a directed path from theassume without loss of generality that the axes are

chosen such that the source is(@t0), and0 < = < y.

Note that in a random linear network code, any linkLet E, , be the event that two different processes are
which has at least one nonzero input transmits the zeegeived by a node at grid positigm, y) relative to the
process with probability1, where¢; is the capacity source. The statement of the proposition is then

of [. This is the same as the probability that a pair of
distinct values for the inputs défare mapped to the same

output value or.

For a given pair of distinct source values, Igtbe the
event that the corresponding inputs to lihlare distinct,
but the corresponding values bare the same. LeE(G)
be the event thaf; occurs for some link on every

source-receiver path in gragh P; is then equal to the

probability of eventE(G;).

Let G/,i = 1,2, 3 be the graph consisting of; node-
disjoint paths, each consisting df links each of unit
capacity. We show by induction om; that P; is upper
bounded by the probability of evet(G!).

We letG be the graphgy;,G/,i = 1,2,3 in turn, and
consider any particular source-receiver pRthin G. We
distinguish two cases:

Case 1.E; does not occur for any of the linkison
the pathP;. In this case the evenE(G) occurs with
probability O.

Case 2: There exists some lihikon the pathP; for
which E; occurs.

Thus, we have . Pi(E(G)) =
Pr(case 2Pr(E(G)|case 2. Since Pg has at
least as many links asPg, Pr(case 2 forG)) >

Pr(E,,] < (142¢7"1 (4"t —1)/3) j2vT*72 (13)

which we prove by induction.

Let Yx’fy denote the process transmitted on the link
between(z — 1,y) and (z,y) and letY,’, denote the
process transmitted on the link betwegny — 1) and
(z,y) (ref Figure 4).

Observe thatPr[E, ,|E,—1,] = 1/2, since with
probability 1/2 node (x — 1,y) transmits to node
(z,y) the process complementary to whatever process
is being transmitted from nodéz,y — 1). Similarly,
Pr(E, y|Eyy—1] =1/2,S0Pr[E, y|Eyr_1, Of By y 1] =
1/2.

Case 1.E; 1,1
Case law,",, # Y, ;. With probability 1,
Yy, #Y],, resultinginE,, UE, 1,. With
probability 3, Y, | = Y, ,, resulting inE, .
SoPr[E,,| Case 1a=§ x 1 + 3 =2,
Case 1bY,", =Y, . EitherE,, UE, 1,
orEyy_1UE;_1,, soPr[E,,| Case 1p=1/2.
Case 2:E; 141
Case 2aY]", #VY?, . EitherE,, UE, 1,
or B,y 1UFE; 1, SOPr[E,,| Case 2a=1/2.

Yy
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Case 2b:Y]" |, S 21,1 By the
assumption of case &7, _, is also equal to this
same process, ari%lr[ $y| Case 2b= 0.
Case2¢cY] | =Y7 #Y]!, . ThenE,,
and E,_1 , soPr[ w,y| Case 2}:_ 1/2.

So

(1]

(2]

Pr[E; y|Ez—1y-1] < max(Pr[E,,| Case 1a
Pr[E, | Case 1b [4]
= 3/4
Pr(E,y|Er—14y-1) < max(Pr[E,,| Case 23 5]
Pr(E, ,| Case 2h
Pr[E, ,| Case 20 [6]
= 1/2
PrlEey] < O PrE 1] 7

1.
"‘5 Pr{E;—14-1] (8]

1 1
—+ —Pr[E,_1 .-
2+4 r[Ey Ly 1] [9]

If (13) holds for some(zx,y), then it also holds for
(z+1y+1):

[10]
1
PT[E:I:H,yH] <5t31 PT[E )
1 L+ 2V (1 444 ... +4772) [11]
D) + 1 Qy+r—2
Cl+2vrtl(4T —1)/3 [12]

outlt+a+1-2

Now Pr[E} ] = 1/2¥~1, since there arg’ — 1 nodes, [13]
(L,1),...,(L,y — 1), at which one of the processes
being transmltted t01, ) is eliminated with probability
1/2. Settingy’ = y — x + 1 gives the base case Whlchm]
completes the induction.

Proof of Proposition 2: In the random coding
scheme we consider, the only randomized variables are
the f; ; variables at nodes receiving information on twi6]
links. The number of such nodes on each source-receiver
path isz+y—2, so the total degree dfs is 2(x+y—2).

Applying Theorem 3 yields the result. B 17
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Fig. 3. Rectangular grid network with two processés and X, originating at a source node. The links are all directed outwards from the
source node. The labels on the links show the source transmissions in the random flooding scheme RF, where one process is sent in bott
directions on one axis and the other process in both directions along the other axis.
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Fig. 4. Rectangular grid network./z’fy denotes the process transmitted on the link betweer 1,y) and (z,y), andY;’, denotes the
process transmitted on the link betweeny — 1) and(z, y).
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