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A random linear network coding approach to
multicast

Tracey Ho, Muriel Ḿedard, Ralf Koetter, David R. Karger, Michelle Effros, Jun Shi and Ben Leong

Abstract— We present a distributed random linear net-
work coding approach for transmission and compression
of information in general multi-source multicast networks.
Network nodes independently and randomly select linear
mappings from inputs onto output links over some field.
We show that this achieves capacity with probability
exponentially approaching 1 with the code length. We
also demonstrate that random linear coding performs
compression when necessary in a network, generalizing
error exponents for linear Slepian-Wolf coding in a natural
way. Benefits of this approach are decentralized operation
and robustness to network changes or link failures. We
show that this approach can take advantage of redundant
network capacity for improved success probability and
robustness. We illustrate some potential advantages of
random linear network coding over routing in two exam-
ples of practical scenarios: distributed network operation
and networks with dynamically varying connections. Our
derivation of these results also yields a new bound on
required field size for centralized network coding on
general multicast networks.

Index Terms— distributed compression, distributed net-
working, multicast, network coding, random linear coding

I. I NTRODUCTION

The capacity of multicast networks with network cod-
ing was given in [1]. We present an efficient distributed
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randomized approach that asymptotically achieves this
capacity. We consider a general multicast framework –
multi-source multicast, possibly with correlated sources,
on general networks. This family of problems includes
traditional single-source multicast for content delivery
and the incast or reachback problem for sensor networks,
in which several, possibly correlated, sources transmit
to a single receiver. We use a randomized strategy: all
nodes other than the receiver nodes perform random
linear mappings from inputs onto outputs over some
field. These mappings are selected independently at each
node. An illustration is given in Figure 1. The receivers
need only know the overall linear combination of source
processes in each of their incoming transmissions. This
information can be sent with each transmission block or
packet as a vector of coefficients corresponding to each
of the source processes, and updated at each coding node
by applying the same linear mappings to the coefficient
vectors as to the information signals. The relative over-
head of transmitting these coefficients decreases with
increasing length of blocks over which the codes and
network remain constant. For instance, if the network
and network code are fixed, all that is needed is for
the sources to send, once, at the start of operation, a
canonical basis through the network.

Our primary results show, firstly, that such random
linear coding achieves multicast capacity with probabil-
ity exponentially approaching 1 with the length of code.
Secondly, in the context of a distributed source coding
problem, we demonstrate that random linear coding also
performs compression when necessary in a network,
generalizing known error exponents for linear Slepian-
Wolf coding [4] in a natural way.

This approach not only recovers the capacity and
achievable rates, but also offers a number of advantages.
While capacity can be achieved by other deterministic
or random approaches, they require, in general, network
codes that are planned by or known to a central authority.
Random design of network codes was first considered
in [1]; our contribution is in showing how random
linear network codes can be constructed and efficiently
communicated to receivers in a distributed manner. For
the case of distributed operation of a network whose
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conditions may be varying over time, our work hints at
a beguiling possibility: that a network may be operated
in a decentralized manner and still achieve the infor-
mation rates of the optimized solution. Our distributed
network coding approach has led to and enabled subse-
quent developments in distributed network optimization,
e.g. [20], [13]. The distributed nature of our approach
also ties in well with considerations of robustness to
changing network conditions. We show that our approach
can take advantage of redundant network capacity for
improved success probability and robustness. Moreover,
issues of stability, such as those arising from propagation
of routing information, are obviated by the fact that each
node selects its code independently from the others.

Our results, more specifically, give a lower bound on
the probability of error-free transmission for independent
or linearly correlated sources, which, owing to the par-
ticular form of transfer matrix determinant polynomials,
is tighter than the Schwartz-Zippel bound (e.g., [23])
for general polynomials of the same total degree. This
bound, which is exponentially dependent on the code
length, holds for any feasible set of multicast connections
over any network topology (including networks with
cycles and link delays). The result is derived using a
formulation based on the Edmonds matrix of bipartite
matching, which leads also to an upper bound on field
size required for deterministic centralized network cod-
ing over general networks. We further give, for acyclic
networks, tighter bounds based on more specific network
structure, and show the effects of redundancy and link
reliability on success probability. For arbitrarily corre-
lated sources, we give error bounds for minimum entropy
and maximum a posteriori probability decoding. In the
special case of a Slepian-Wolf source network consisting
of a link from each source to the receiver, our error
exponents reduce to the corresponding results in [4] for
linear Slepian-Wolf coding. The latter scenario may thus
be considered a degenerate case of network coding.

We illustrate some possible applications with two
examples of practical scenarios – distributed settings
and networks with dynamically varying connections –
in which random linear network coding shows particular
promise of advantages over routing.

This paper is an initial exploration of random linear
network coding, posing more questions that it answers.
We do not cover aspects such as resource and energy
allocation, but focus on optimally exploiting a given
set of resources. Resource consumption can naturally be
traded off against capacity and robustness, and across
multiple communicating sessions; subsequent work on
distributed resource optimization, e.g. [13], [21], has
used random linear network coding as a component of

the solution. There are also many issues surrounding
the adaptation of protocols, which generally assume
routing, to random coding approaches. We do not address
these here, but rather seek to establish that the potential
benefits of random linear network coding justify future
consideration of protocol compatibility with or adapta-
tion to network codes.

The basic random linear network coding approach
involves no coordination among nodes. Implementations
for various applications may not be completely protocol-
free, but the roles and requirements for protocols may
be substantially redefined in this new environment. For
instance, if we allow for retrials to find successful codes,
we in effect trade code length for some rudimentary
coordination.

Portions of this work have appeared in [9], which
introduced distributed random linear network coding, [8],
which presented the Edmonds matrix formulation and
a new bound on required field size for centralized
network coding, [12], which generalized previous re-
sults to arbitrary networks and gave tighter bounds for
acyclic networks, [11], on network coding for arbitrarily
correlated sources, and [10], which considered random
linear network coding for online network operation in
dynamically varying environments.

A. Overview

A brief overview of related work is given in Sec-
tion I-B. In Section II, we describe the network model
and algebraic coding approach we use in our analyses,
and introduce some notation and existing results. Sec-
tion III gives some insights arising from consideration
of bipartite matching and network flows. Success/error
probability bounds for random linear network coding are
given for independent and linearly correlated sources
in Section IV and for arbitrarily correlated sources in
Section V. We also give examples of practical scenarios
in which randomized network coding can be advanta-
geous compared to routing, in Section VI. We present
our conclusions and some directions for further work in
Section VII. Proofs and ancillary results are given in the
appendix.

B. Related Work

Ahlswede et al. [1] showed that with network cod-
ing, as symbol size approaches infinity, a source can
multicast information at a rate approaching the smallest
minimum cut between the source and any receiver. Li
et al. [19] showed that linear coding with finite symbol
size is sufficient for multicast. Koetter and Médard [17]
presented an algebraic framework for network coding
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that extended previous results to arbitrary networks and
robust networking, and proved the achievability with
time-invariant solutions of the min-cut max-flow bound
for networks with delay and cycles. Reference [17] also
gave an algebraic characterization of the feasibility of a
multicast problem and the validity of a network coding
solution in terms of transfer matrices, for which we gave
in [8] equivalent formulations obtained by considering
bipartite matching and network flows. We used these
formulations in obtaining a tighter upper bound on the
required field size than the previous bound of [17], and
in our analysis of distributed randomized network cod-
ing, introduced in [9]. Concurrent independent work by
Sanders et al. [26] and Jaggi et al. [14] considered single-
source multicast on acyclic delay-free graphs, showing a
similar bound on field size by different means, and giving
centralized deterministic and randomized polynomial-
time algorithms for finding network coding solutions
over a subgraph consisting of flow solutions to each
receiver. Subsequent work by Fragouli and Soljanin [7]
gave a tighter bound for the case of two sources and
for some configurations with more than two sources.
Lower bounds on coding field size were presented by
Rasala Lehman and Lehman [18] and Feder et al. [6].
Reference [6] also gave graph-specific upper bounds
based on the number of “clashes” between flows from
source to terminals.

Dougherty et al. [5] presented results on linear so-
lutions for binary solvable multicast networks, and on
non-finite field alphabets. The need for vector coding
solutions in some non-multicast problems was consid-
ered by Rasala Lehman and Lehman [18], Médard et
al. [22] and Riis [25]. Various practical protocols for and
experimental demonstrations of random linear network
coding [3] and non-randomized network coding [29],
[24] have also been presented.

II. M ODEL AND PRELIMINARIES

A. Basic model

Our basic network coding model is based on [1], [17].
A network is represented as a directed graphG = (V, E),
whereV is the set of network nodes andE is the set of
links, such that information can be sent noiselessly from
nodei to j for all (i, j) ∈ E . Each linkl ∈ E is associated
with a non-negative real numbercl representing its
transmission capacity in bits per unit time.

Nodesi and j are called theorigin and destination
respectively of link(i, j). The origin and destination of
a link l ∈ E are denotedo(l) andd(l) respectively. We
assumeo(l) 6= d(l) ∀ l ∈ E . The information transmitted
on a link l ∈ E is obtained as a coding function of
information previously received ato(l).

There arer discrete memoryless information source
processesX1, X2, . . . , Xr which are random binary se-
quences. We denote the Slepian-Wolf region of the
sources

RSW =

{
(R1, R2, . . . , Rr) :

∑

i∈S
Ri > H(XS |XSc)

∀ S ⊆ {1, 2, . . . , r}
}

where XS = (Xi1 , Xi2 , . . . , Xi|S|), ik ∈ S, k =
1, . . . , |S|. Source processXi is generated at node
a(i), and multicast to all nodesj ∈ b(i), where a :
{1, . . . , r} → V and b : {1, . . . , r} → 2V are arbitrary
mappings. In this paper we consider the (multi-source)
multicast case whereb(i) = {β1, . . . , βd} for all i ∈
[1, r]. The nodesa(1), . . . , a(r) are calledsource nodes
and the nodesβ1, . . . , βd are calledreceiver nodes, or
receivers. For simplicity we assume subsequently that
a(i) 6= βj ∀ i ∈ [1, r], j ∈ [1, d]. The mappinga, the set
{β1, . . . , βd} and the Slepian-Wolf regionRSW specify a
set of multicastconnection requirements. The connection
requirements are satisfied if each receiver is able to
reproduce, from its received information, the complete
source information. A graphG = (V, E), a set of link
capacities{cl|l ∈ E} and a set of multicast connection
requirementsC specify amulticast connection problem.

We make a number of simplifying assumptions. Our
analysis for the case of independent source processes
assumes that each source processXi has an entropy
rate of one bit per unit time; sources of larger rate are
modelled as multiple sources at the same node. For the
case of linearly correlated sources, we assume that the
sources can be modeled as given linear combinations of
underlying independent source processes, each with an
entropy rate of one bit per unit time, as described further
in Section II-B. For the case of arbitrarily correlated
sources, we consider sources with integer bit rates and
arbitrary joint probability distributions.

For the case of independent or linearly correlated
sources, each linkl ∈ E is assumed to have a capacity
cl of one bit per unit time; links with larger capacities
are modeled as parallel links. For the case of arbitrarily
correlated sources, the link ratescl are assumed to be
integers.

Reference [1] shows that coding enables the multicast
information rate from a single source to attain the
minimum of the individual receivers’ max-flow bounds1,
and shows how to convert multicast problems with

1i.e., the maximum commodity flow from the source to individual
receivers
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multiple independent sources to single-source problems.
Reference [19] shows that linear coding is sufficient to
achieve the same individual max-flow rates; in fact, it
suffices to do network coding using only scalar algebraic
operations in a finite fieldF2u , for some sufficiently large
u, on length-u vectors of bits that are viewed as elements
of F2u [17]. The case of linearly correlated sources is
similar.

For arbitrarily correlated sources, we consider op-
erations inF2 on vectors of bits. This vector coding
model can, for given vector lengths, be brought into
the scalar algebraic framework of [17] by conceptually
expanding each source into multiple sources and each
link into multiple links, such that each new source
and link corresponds to one bit of the corresponding
information vectors. We describe this scalar framework
in Section II-B, and use it in our analysis of arbitrarily
correlated sources in Section V. Note however that the
linear decoding strategies of [17] do not apply for the
case of arbitrarily correlated sources.

We consider both the case of acyclic networks where
link delays are not considered, as well as the case of
general networks with cycles and link delays. The former
case, which we calldelay-free, includes networks whose
links are assumed to have zero delay, as well as networks
with link delays that are operated in a burst [19],
pipelined [26] or batched [3] fashion, where information
is buffered or delayed at intermediate nodes so as to
be combined with other incoming information from the
same batch. A cyclic graph withv nodes and rater
may also be converted to an expanded acyclic graph with
κv nodes and rate at least(κ − v)r, communication on
which can be emulated overκ time steps on the original
cyclic graph [1]. For the latter case, we consider general
networks without buffering, and make the simplifying
assumption that each link has the same delay.

We use some additional definitions in this paper. Link
l is an incident outgoing linkof nodev if v = o(l), and
an incident incoming linkof v if v = d(l). We call an
incident incoming link of a receiver node aterminal link,
and denote byTβ the set of terminal links of a receiver
β. A path is a subgraph of the network consisting of a
sequence of linkse1, . . . , ek such thatd(ei) = o(ei+1),
o(e1) 6= d(ek) andd(ei) 6= d(ej) ∀ i 6= j, and is denoted
(e1, . . . , ek). A flow solution for a receiverβ is a set
of links forming r link-disjoint paths each connecting a
different source toβ.

B. Algebraic network coding

In the scalar algebraic coding framework of [17],
the source information processes, the receiver output

processes, and the information processes transmitted on
each link, are sequences of length-u blocks or vectors of
bits, which are treated as elements of a finite fieldFq,
q = 2u. The information processYj transmitted on a link
j is formed as a linear combination, inFq, of link j’s
inputs, i.e. source processesXi for which a(i) = o(j)
and random processesYl for which d(l) = o(j), if
any. For the delay-free case, this is represented by the
equation

Yj =
∑

{i : a(i)=o(j)}
ai,jXi +

∑

{l : d(l)=o(j)}
fl,jYl.

The ith output processZβ,i at receiver nodeβ is a linear
combination of the information processes on its terminal
links, represented as

Zβ,i =
∑

{l : d(l)=β}
bβ,i,lYl.

For multicast on a network with link delays, memory is
needed at the receiver (or source) nodes, but memoryless
operation suffices at all other nodes [17]. We consider
unit delay links, modeling links with longer delay as
links in series. The corresponding linear coding equa-
tions are

Yj(t + 1) =
∑

{i : a(i)=o(j)}
ai,jXi(t)

+
∑

{l : d(l)=o(j)}
fl,jYl(t)

Zβ,i(t + 1) =
µ∑

u=0

b′β,i(u)Zβ,i(t− u)

+
∑

{l : d(l)=β}

µ∑

u=0

b′′β,i,l(u)Yl(t− u)

where Xi(t), Yj(t), Zβ,i(t), b′β,i(t) and b′′β,i,l(t) are the
values of the corresponding variables at timet respec-
tively and µ represents the memory required. These
equations, as with the random processes in the network,
can be represented algebraically in terms of a delay
variableD:

Yj(D) =
∑

{i : a(i)=o(j)}
Dai,jXi(D)

+
∑

{l : d(l)=o(j)}
Dfl,jYl(D)

Zβ,i(D) =
∑

{l : d(l)=β}
bβ,i,l(D)Yl(D)

where

bβ,i,l(D) =

∑µ
u=0 Du+1b′′β,i,l(u)

1−∑µ
u=0 Du+1b′β,i(u)

(1)
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and

Xi(D) =
∞∑

t=0

Xi(t)Dt

Yj(D) =
∞∑

t=0

Yt(j)Dt, Yj(0) = 0

Zβ,i(D) =
∞∑

t=0

Zβ,i(t)Dt, Zβ,i(0) = 0.

The coefficients{ai,j , fl,j , bβ,i,l} can be collected into
r × |E| matrices

A =
{

(ai,j) in the acyclic delay-free case
(Dai,j) in the general case with delays

andBβ = (bβ,i,l), and the|E| × |E| matrix

F =
{

(fl,j) in the acyclic delay-free case
(Dfl,j) in the general case with delays,

whose structure is constrained by the network. A pair
(A,F) or tuple (A,F,Bβ1 , . . . ,Bβd

) can be called a
linear network code.

We also consider a class of linearly correlated sources
modeled as given linear combinations of underlying
independent processes, each with an entropy and bit
rate of one bit per unit time. To simplify the notation
in our subsequent development, we work with these
underlying independent processes in a similar manner
as for the case of independent sources: thejth column
of theA matrix is a linear function

∑
k αk,jxk

j of given
column vectorsxk

j ∈ Fr
2, wherexk

j specifies the mapping
from r underlying independent processes to thekth
source process ato(j).2 A receiver that decodes these
underlying independent processes is able to reconstruct
the linearly correlated source processes.

For acyclic graphs, we assume an ancestral indexing
of links in E , i.e. if d(l1) = o(l2) for any linksl1, l2, then
l1 has a lower index thanl2. Such an indexing always
exists for acyclic networks. It then follows that matrix
F is upper triangular with zeros on the diagonal.

Let G = (I − F)−1.3 The mapping from
source processes[X1, . . . , Xr] to output processes
[Zβ,1, . . . , Zβ,r] at a receiverβ is given by the transfer
matrix AGBT

β [17]. For a given multicast connection
problem, if some network code(A,G,Bβ1 , . . . ,Bβd

) in
a fieldFq (or Fq(D)) satisfies the condition thatAGBT

βk

2We can also consider the case wherexk
j ∈ Fr

2m by restricting
network coding to occur inFq, q = 2mn.

3For the acyclic delay-free case, the sequence(I − F)−1 = I +
F + F2 + . . . converges sinceF is nilpotent for an acyclic network.
For the case with delays,(I− F)−1 exists since the determinant of
I−F is nonzero in its field of definitionF2(D, . . . , fl,j , . . .), as seen
by letting D = 0. [17]

has full rank r for each receiverβk, k = 1, . . . , d,
then B̃βk

= (Bβk
GTAT )−1Bβk

satisfiesAGB̃T
βk

= I,
and (A,G, B̃β1 , . . . , B̃βd

) is a solution to the multi-
cast connection problem in the same field. A multicast
connection problem for which there exists a solution
in some fieldFq or Fq(D) is called feasible, and the
corresponding connection requirements are said to be
feasible for the network. In subsequent sections where
we consider choosing the value of(A,G) by distributed
random coding, the following definitions are useful: if
for a receiverβk there exists some value ofBβk

such
that AGBT

βk
has full rankr , then (A,G) is a valid

network code forβk; a network code(A,G) is valid
for a multicast connection problem if it is valid for all
receivers.

The lth column of matrixAG specifies the mapping
from source processes to the random process on linkl.
We denote byGH the submatrix consisting of columns
of G corresponding to a set of linksH.

For a receiverβ to decode, it needs to know the
mappingAGTβ

from the source processes to the random
processes on its terminal links. The entries ofAGTβ

are
scalar elements ofFq in the acyclic delay-free case, and
polynomials in delay variableD in the case with link
delays. In the latter case, the number of terms of these
polynomials and the memory required at the receivers
depend on the number of links involved in cycles, which
act like memory registers, in the network.

We use the notational convention that matrices are
named with bold uppercase letters and vectors are named
with bold lowercase letters.

III. I NSIGHTS FROM BIPARTITE MATCHING AND

NETWORK FLOWS

As described in the previous section, for a multicast
connection problem with independent or linearly corre-
lated sources, the transfer matrix condition of [17] for
the problem to be feasible (or for a particular linear
network code defined by matrices(A,G) to be valid
for the connection problem) is that for each receiverβ,
the transfer matrixAGBT

β has nonzero determinant. The
following result shows the equivalence of this transfer
matrix condition and the Edmonds matrix formulation
for checking if a bipartite graph has a perfect matching
(e.g., [23]). The problem of determining whether a
bipartite graph has a perfect matching is a classical
reduction of the problem of checking the feasibility of
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an s − t flow [15]4. This latter problem can be viewed
as a degenerate case of network coding, restricted to the
binary field and without any coding; it is interesting to
find that the two formulations are equivalent for the more
general case of linear network coding in higher order
fields.

Lemma 1: (a) For an acyclic delay-free network,
the determinant of the transfer matrixM1 = A(I −
F)−1BT

β for receiverβ is equal to

|M1| = (−1)r(|E|+1) |M2|

where M2 =
[

A 0
I− F BT

β

]
is the corresponding

Edmonds matrix.
(b) For an arbitrary network with unit delay links, the
transfer matrixA(D)(I−F(D))−1BT

β (D) for receiverβ
is nonsingular if and only if the corresponding Edmonds
matrix[

A(D) 0
I− F(D) BT

β (D)

]
is nonsingular.

Proof: See Appendix A.

The usefulness of this result is in making apparent
various characteristics of the transfer matrix determinant
polynomial that are obscured in the original transfer
matrix by the matrix products and inverse. For instance,
the maximum exponent of a variable, the total degree
of the polynomial, and its form for linearly correlated
sources are easily deduced, leading to Theorems 1 and 2.

For the acyclic delay-free case, Lemma 2 below is
another alternative formulation of the same transfer ma-
trix condition which illuminates similar properties of the
transfer matrix determinant as Lemma 1. Furthermore,
by considering network coding as a superposition of flow
solutions, Lemma 2 allows us to tighten, in Theorem 3,
the bound of Theorem 2 for random network coding on
given acyclic networks in terms of the number of links
in a flow solution for an individual receiver.

Lemma 2:A multicast connection problem withr
sources is feasible (or a particular network code(A,F)
is valid for the problem) if and only if each receiverβ

4The problem of checking the feasibility of ans− t flow of sizer
on graphG = (V, E) can be reduced to a bipartite matching problem
by constructing the following bipartite graph: one set of the bipartite
graph hasr nodesu1, . . . , ur, and a nodevl,1 corresponding to each
link l ∈ E ; the other set of the bipartite graph hasr nodesw1, . . . , wr,
and a nodevl,2 corresponding to each linkl ∈ E . The bipartite graph
has links joining each nodeui to each nodevl,1 such thato(l) = s,
a link joining nodevl,1 to the corresponding nodevl,2 for all l ∈ E ,
links joining nodevl,2 to vj,1 for each pair(l, j) ∈ E × E such that
d(l) = o(j), and links joining each nodewi to each nodevl,2 such
that d(l) = t. The s − t flow is feasible if and only if the bipartite
graph has a perfect matching.

has a setHβ of r terminal links for which

∑
{link-disjoint pathsE1 = (l11, . . . , l1n1 ), . . . ,

Er = (lr1, . . . , lrnr ) : o(li1) = a(i), lini
∈ Hβ}

∣∣A{l11,...,lr1}
∣∣

r∏

j=1

g(Ej) 6= 0

whereA{l11,...,lr1} is the submatrix ofA consisting of
links {l11, . . . , lr1}, and

g(E) =
{

fe1,e2fe2,e3 . . . fek−1,ek
if k > 1

1 if k = 1

is the product of gains on the pathE = (e1, . . . , ek). The
sum is over all flow solutions from the sources to links
in Hβ, each such solution being a set ofr link-disjoint
paths each connecting a different source to a different
link in Hβ.

Proof: See Appendix A.

Lemma 1 leads to the following upper bound on
required field size for a feasible multicast problem,
which tightens the upper bound ofq > rd given in [17],
wherer is the number of processes being transmitted in
the network.

Theorem 1:For a feasible multicast connection prob-
lem with independent or linearly correlated sources and
d receivers, in both the acyclic delay-free case and
the general case with delays, there exists a solution
(A,F,Bβ1 , . . . ,Bβd

) in finite field Fq if q > d.
Proof: See Appendix A.

Work done by [14], [26] independently of and concur-
rently with the initial conference publication of this result
showed, by different means, the sufficiency ofq ≥ d for
the acyclic delay-free case. Subsequent work by [7] gave
a tighter bound ofq ≥

√
2d− 7/4+1/2 for the case of

two sources and for some configurations with more than
two sources that satisfy some regularity conditions.

IV. RANDOM LINEAR NETWORK CODING FOR

INDEPENDENT OR LINEARLY CORRELATED SOURCES

In this section, we consider random linear network
codes in which some or all of the network code coef-
ficients{ai,j (αk,j for linearly correlated sources),fl,j}
are chosen independently and uniformly overFq, where
q is greater than the number of receiversd.

The next two results cover the case where some co-
efficients are fixed instead of being randomly chosen, as
long as there exists a solution to the network connection
problem with the same values for these fixed coeffi-
cients. For instance, if a node receives linearly dependent
processes on two linksl1, l2, it can fix fl1,j = 0 for all
outgoing linksj. Nodes that cannot determine the appro-
priate code coefficients from local information choose
the coefficients independently and uniformly fromFq.
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Theorem 2:Consider a multicast connection problem
on an arbitrary network with independent or linearly
correlated sources, and a network code in which some or
all network code coefficients{ai,j , αk,j , fl,j} are chosen
uniformly at random from a finite fieldFq whereq > d,
and the remaining code coefficients, if any, are fixed. If
there exists a solution to the network connection problem
with the same values for the fixed code coefficients, then
the probability that the random network code is valid
for the problem is at least(1 − d/q)η, whereη is the
number of linksj with associated random coefficients
{ai,j , αk,j , fl,j}.

Proof: See Appendix B.

The code lengthu is the logarithm of the field size
q = 2u. It affects computational complexity and delay,
since algebraic operations are performed on codewords
of lengthu. Note that the bound, derived using Lemma 1,
is tighter than the bound of1− dη/q obtained by direct
application of the Schwartz-Zippel Theorem (e.g., [23])
which only considers the total degree of the polynomial.
The corresponding upper bound on the error probability
is on the order of the inverse of the field size, so the error
probability decreases exponentially with the number of
codeword bitsu.

The bound of Theorem 2 is very general, applying
across all networks with the same number of receivers
and the same number of links with associated random
code coefficients, without considering specific network
structure. However, it is intuitive that having more re-
dundant capacity in the network, for instance, should
increase the probability that a random linear code will
be valid. Tighter bounds can be obtained by taking
into account more specific network structure. Three such
bounds, for the acyclic delay-free case, are given below.
We have not proven or disproven whether they extend to
networks with cycles.

The first tightens the bound of Theorem 2 for
the acyclic delay-free case, by using in its derivation
Lemma 2 in place of Lemma 1. It is used in Section VI
to derive a bound on the probability of obtaining a valid
random network code on a grid network.

Theorem 3:Consider a multicast connection problem
on an acyclic network with independent or linearly
correlated sources, and a network code in which some or
all network code coefficients{ai,j , αk,j , fl,j} are chosen
uniformly at random from a finite fieldFq whereq > d,
and the remaining code coefficients, if any, are fixed. If
there exists a solution to the network connection problem
with the same values for the fixed code coefficients,
then the probability that the random network code is
valid for the problem is at least(1− d/q)η′ , whereη′ is

the maximum number of links with associated random
coefficients in any set of links constituting a flow solution
for any receiver.

Proof: See Appendix B.

The next bound is useful in cases where analysis of
connection feasibility is easier than direct analysis of
random linear coding.

Theorem 4:Consider a multicast connection problem
with independent or linearly correlated sources on an
acyclic graphG. The probability that a random linear
network code inFq is valid for the problem onG is
greater than or equal to the probability that the same
connection requirements are feasible on a modified graph
formed by deleting each link ofG with probability d/q.

Proof: See Appendix B.

The above theorem is used in obtaining the following
result showing how spare network capacity and/or more
reliable links allow us to use a smaller field size to
surpass a particular success probability.

Theorem 5:Consider a multicast connection problem
on an acyclic networkG with independent or linearly
correlated sources of joint entropy rater, and links which
fail (are deleted from the network) with probabilityp. Let
y be the minimum redundancy, i.e. the original connec-
tion requirements are feasible on a network obtained by
deleting anyy links in G. The probability that a random
linear network code inFq is valid for a particular receiver
is at least

r+y∑
x=r

(
r + y

x

)(
1− p− 1− p

q

)Lx

(
1−

(
1− p− 1− p

q

)L
)r+y−x

whereL is the longest source-receiver path in the net-
work.

Proof: See Appendix B.

V. RANDOM LINEAR NETWORK CODING FOR

ARBITRARILY CORRELATED SOURCES

So far we have been considering independent or lin-
early correlated sources. We next consider transmission
of arbitrarily correlated sources, using random linear
network coding, over networks where compression may
be required.

Analogously to Slepian and Wolf [28], we consider
the problem of distributed encoding and joint decoding
of two sources whose output values in each unit time
period are drawn i.i.d. from the same joint distribution
Q. The difference is that in our problem, transmission
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occurs across an arbitrary network of intermediate nodes
that can perform network coding. In the special case of a
network consisting of one direct link from each source to
a common receiver, this reduces to the original Slepian-
Wolf problem.

We consider a vector linear network code that operates
on blocks of bits. Linear coding is done inF2 over blocks
consisting ofnri bits from each sourceXi, whereri is
the bit rate of sourceXi. Each node transmits, on each
of its incident outgoing linksl, ncl bits for each block,
formed as random linear combinations of corresponding
source bits originating at that node and bits transmitted
on incident incoming links, if any, as illustrated in
Figure 2. An α-decoder (which may be a minimum
entropy or maximumQ-probability decoder) [4] at a
receiver maps a block of received bits to a block of de-
coded values that has minimum entropy or maximumQ-
probability among all possible source values consistent
with the received block.

We bound the probability of decoding error at a
receiver, i.e. the probability that a block of source
values differs from the decoded values. Specifically, we
consider the case of two sources whose output values
in each unit time period are drawn i.i.d. from the same
joint distributionQ. Let m1 andm2 be the minimum cut
capacities between the receiver and each of the sources
respectively, and letm3 be the minimum cut capacity
between the receiver and both sources. We denote byL
the maximum source-receiver path length. Our approach
follows that in [4], whose results we extend. As there,
the typePx of a vectorx ∈ Fñ

2 is the distribution onF2

defined by the relative frequencies of the elements ofF2

in x, and joint typesPxy are analogously defined.
Theorem 6:The error probability of the random linear

network code is at most
∑3

i=1 pi
e, where

p1
e ≤ exp

{
− nmin

X,Y

(
D(PXY ||Q)

+
∣∣∣∣m1(1− 1

n
log L)−H(X|Y )

∣∣∣∣
+

)

+22r1+r2 log(n + 1)

}

p2
e ≤ exp

{
− nmin

X,Y

(
D(PXY ||Q)

+
∣∣∣∣m2(1− 1

n
log L)−H(Y |X)

∣∣∣∣
+

)

+2r1+2r2 log(n + 1)

}

p3
e ≤ exp

{
− nmin

X,Y

(
D(PXY ||Q)

+
∣∣∣∣m3(1− 1

n
log L)−H(XY )

∣∣∣∣
+

)

+22r1+2r2 log(n + 1)

}

andX,Y are dummy random variables with joint distri-
bution PXY .

Proof: See Appendix B.

The error exponents

e1 = min
X,Y

(
D(PXY ||Q)

+
∣∣∣∣m1(1− 1

n
log L)−H(X|Y )

∣∣∣∣
+

)

e2 = min
X,Y

(
D(PXY ||Q)

+
∣∣∣∣m2(1− 1

n
log L)−H(Y |X)

∣∣∣∣
+

)

e3 = min
X,Y

(
D(PXY ||Q)

+
∣∣∣∣m3(1− 1

n
log L)−H(XY )

∣∣∣∣
+

)
,

for general networks reduce to those obtained in [4] for
the Slepian-Wolf network whereL = 1,m1 = R1,m2 =
R2,m3 = R1 + R2:

e1 = min
X,Y

(
D(PXY ||Q) + |R1 −H(X|Y )|+)

e2 = min
X,Y

(
D(PXY ||Q) + |R2 −H(Y |X)|+)

e3 = min
X,Y

(
D(PXY ||Q) + |R1 + R2 −H(XY )|+)

.

VI. B ENEFITS OFRANDOMIZED CODING OVER

ROUTING

Network coding, as a superset of routing, has been
shown to offer significant capacity gains for networks
with special structure [26]. For many other networks,
network coding does not give higher capacity than cen-
tralized optimal routing, but can offer other advantages
when centralized optimal routing is difficult. In this
section we consider two types of network scenarios in
which distributed random linear coding can be particu-
larly useful.
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A. Distributed Settings

In networks with large numbers of nodes and/or
changing topologies, it may be expensive or infeasible
to reliably maintain routing state at network nodes.
Distributed randomized routing schemes have been pro-
posed [2], [27] which address this kind of issue. How-
ever, not allowing different signals to be combined can
impose intrinsic penalties in efficiency compared to using
network coding.

Consider as a simple example the problem of sending
two processes from a source node to receiver nodes in
unknown locations on a rectangular grid network, shown
in Figure 3. For simplicity, we analyze the acyclic delay-
free case, which may correspond to synchronized, burst
or pipelined operation where each transmission at a node
v occurs upon reception of transmissions on all incident
incoming links ofv.

Suppose we wish to use a distributed transmission
scheme that does not involve any coordination among
nodes or routing state. The network aims to maximize
the probability that any node will receive two distinct
processes, by flooding in a way that preserves message
diversity, for instance using the following random flood-
ing scheme RF:

• The source node sends one process in both direc-
tions on one axis and the other process in both
directions along the other axis, as illustrated in
Figure 3.

• A node receiving information on one link sends the
same information on its three outgoing links (these
are nodes along the grid axes passing through the
source node).

• A node receiving information on two links sends
one of the incoming processes on one of its two
outgoing links with equal probability, and the other
process on the remaining link.

For comparison, we consider the same rectangular
grid problem with the following simple random coding
scheme RC (ref Figure 3):

• The source node sends one process in both direc-
tions on one axis and the other process in both
directions along the other axis.

• A node receiving information on one link sends the
same information on its three outgoing links.

• A node receiving information on two links sends a
random linear combination of the source processes
on each of its two outgoing links.5

5This simple scheme, unlike the randomized flooding scheme RF,
leaves out the optimization that each node receiving two linearly in-
dependent processes should always send out two linearly independent
processes.

Proposition 1: For the randomized flooding scheme
RF, the probability that a receiver located at grid po-
sition (x, y) relative to the source receives both source
processes is at most

1 + 2||x|−|y||+1(4min(|x|,|y|)−1 − 1)/3
2|x|+|y|−2

Proof: See Appendix C.

Proposition 2: For the random coding scheme RC,
the probability that a receiver located at grid position
(x, y) relative to the source can decode both source
processes is at least(1− 1/q)2(x+y−2).

Proof: See Appendix C.

Table I gives, for various values ofx andy, the values
of the success probability bounds as well as some actual
probabilities for the random flooding scheme RF when
x and y are small. Note that an increase in grid size
from 3× 3 to 10× 10 requires only an increase of two
in codeword length for the random coding scheme RC
to obtain success probability lower bounds close to 0.9,
which are substantially better than the upper bounds for
RF.

B. Dynamically Varying Connections

Another scenario in which random linear network
coding can be advantageous is for multi-source multi-
cast with dynamically varying connections. We compare
distributed randomized coding to an approximate online
Steiner tree routing approach from [16] in which, for
each transmitter, a tree is selected in a centralized fash-
ion. Since the complexity of setting up each connection
is a significant consideration in the dynamic scenario we
consider, we use one tree per connection; more compli-
cated online routing approaches using multiple Steiner
trees may be able to achieve a smaller performance gap
compared to network coding, but this is not within the
scope of our paper.

Since sophisticated routing algorithms are difficult to
analyze, we use a simulation-based approach. We ran
trials on randomly generated graphs with the following
parameters: number of nodesn, number of sources
r, number of receiversd, transmission rangeρ, and
maximum in-degree and out-degreei. For each trial,n
nodes were scattered uniformly over a unit square. To
create an acyclic graph we ordered the nodes by theirx-
coordinate and chose the direction of each link to be from
the lower numbered to the higher numbered node. Any
pair of nodes within Euclidian distanceρ of each other
was connected by a link, up to the maximum in-degree
and out-degree of the nodes involved. The receiver nodes
were chosen as thed highest numbered nodes, andr
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Receiver position (2,2) (3,3) (4,4) (10,10) (2,3) (9,10) (2,4) (8,10)

actual 0.75 0.672 0.637 - 0.562 - 0.359 -RF
upper bound 0.75 0.688 0.672 0.667 0.625 0.667 0.563 0.667

F24 lower bound 0.772 0.597 0.461 0.098 0.679 0.111 0.597 0.126
RC F26 lower bound 0.939 0.881 0.827 0.567 0.910 0.585 0.882 0.604

F28 lower bound 0.984 0.969 0.954 0.868 0.977 0.875 0.969 0.882
TABLE I

SUCCESS PROBABILITIES OF RANDOMIZED FLOODING SCHEMERF AND RANDOM LINEAR CODING SCHEMERC. THE TABLE GIVES

BOUNDS AS WELL AS SOME ACTUAL PROBABILITY VALUES WHERE EXACT CALCULATIONS ARE TRACTABLE.

source nodes were chosen randomly (with replacement)
from among the lower-numbered half of the nodes. The
parameter values for the tests were chosen such that the
resulting random graphs would in general be connected
and able to support some of the desired connections,
while being small enough for the simulations to run
efficiently.

Each trial consisted of a number of time slots. In
each time slot, a source was either on, i.e. transmitting
source information, or off, i.e. not transmitting source
information. For the approximate Steiner tree routing
algorithm, each source that was on was associated with
a Steiner tree, link-disjoint from the others, connecting
it to all the receivers.

At the beginning of each time slot, any source that
was on stayed on with probability1− po or else turned
off, and any source that was off stayed off with prob-
ability 1 − po or else underwent, in turn, the following
procedure:

• For the approximate Steiner tree routing algorithm,
the algorithm was applied to search for a Steiner
tree, link-disjoint with the Steiner trees of other
sources that were currently on, connecting that
source to all the receivers. If such a Steiner tree
was found, the source turned on, using that Steiner
tree to transmit its information to all receivers; if
not, the source was blocked, i.e. stayed off.

• For network coding, up to three random linear
network codes were chosen. If one of them was
valid for transmitting information to all receivers
from that source as well as other sources that were
currently on, the source turned on; otherwise, the
source was blocked.

We used as performance metrics the frequency of
blocked requests and the average throughput, which were
calculated for windows of250 time slots until these
measurements reached steady-state, i.e. measurements in
three consecutive windows being within a factor of 0.1
from each other, so as to avoid transient initial startup
behavior. Some results for various randomly generated
networks are given in Table II.

These simulations do not attempt to quantify precisely
the differences in performance and overhead of random
linear coding and online routing, but are useful as a pre-
liminary indication. With regard to throughput and block-
ing probability, the simulations show that random linear
network coding outperforms the Steiner tree heuristic
on a non-negligible set of randomly constructed graphs,
indicating that when connections vary dynamically, cod-
ing can offer advantages that are not circumscribed to a
few carefully chosen examples. With regard to overhead,
the additional overhead of network coding comes from
the linear coding operations at each node, the decoding
operations at the receivers, and the coefficient vectors
sent with each block or packet. Each of these types of
overhead depends on the coding field size. Our theoreti-
cal bounds of previous sections guarantee the optimality
of random linear coding for large enough field sizes, but
they are tight only for worst-case network connection
problems. The simulations illustrate the kinds of field
sizes needed in practice for networks with a moderate
number of nodes. To this end, we use a small field size
that allows random linear coding to generally match the
performance of the Steiner heuristic, and to surpass it
in networks whose topology makes Steiner tree routing
difficult. The simulations show the applicability of short
network code lengths of 4-5 bits for networks of 8-12
nodes.

VII. C ONCLUSION

We have presented a distributed random linear network
coding approach which asymptotically achieves capac-
ity, as given by the max flow min cut bound of [1],
in multi-source multicast networks. We have given a
general bound on the success probability of such codes
for arbitrary networks, showing that error probability
decreases exponentially with code length. Our analysis
uses insights from network flows and bipartite matching,
which also lead to a new bound on required field size
for centralized network coding. We have also given
tighter bounds for acyclic networks which take into
account more specific network structure, and show how
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TABLE II

A SAMPLE OF RESULTS ON GRAPHS GENERATED WITH THE FOLLOWING PARAMETERS: NUMBER OF NODESn, NUMBER OF SOURCESr,

NUMBER OF RECEIVERSd, TRANSMISSION RANGEρ, MAXIMUM IN -DEGREE AND OUT-DEGREEi. br AND bc ARE THE RATE OF BLOCKED

CONNECTIONS FOR ROUTING AND CODING, RESPECTIVELY, AND tr AND tc ARE THE CORRESPONDING THROUGHPUTS.

Parameters Results
nodesn srcss rcvrs d deg i rangeρ prob po Network br tr bc tc

1 1.54 1.46 1.55 1.46
8 6 1 4 0.5 0.6 2 0.72 2.27 0.74 2.31

3 0.26 2.78 0.23 2.74
1 2.14 0.84 2.17 0.83

9 6 2 3 0.5 0.7 2 0.70 2.31 0.68 2.28
3 0.90 2.05 0.71 2.26
1 0.61 1.43 0.50 1.45

10 4 2 4 0.5 0.6 2 1.62 0.53 1.52 0.54
3 0.14 1.96 0.00 2.05
1 1.31 1.63 0.71 2.28

10 6 2 4 0.5 0.5 2 0.74 2.17 0.64 2.42
3 1.51 1.54 1.49 1.61
1 1.05 2.37 1.14 2.42

10 9 3 3 0.5 0.7 2 1.36 2.22 1.06 2.39
3 2.67 0.87 2.56 0.89
1 1.44 1.67 0.71 2.31

12 6 2 4 0.5 0.6 2 0.28 2.72 0.29 2.75
3 0.75 2.28 0.73 2.31
1 2.39 1.73 2.34 1.74

12 8 2 3 0.5 0.7 2 2.29 1.73 2.23 1.74
3 1.57 2.48 1.52 2.51

redundant network capacity and link reliability affect the
probability of obtaining a valid random linear code.

Taking a source coding perspective, we have shown
that distributed random linear network coding effectively
compresses correlated sources within a network, provid-
ing error exponents that generalize corresponding results
for linear Slepian-Wolf coding.

Finally, two examples of scenarios in which ran-
domized network coding shows benefits over routing
approaches have been presented. These examples suggest
that the decentralized nature and robustness of random
linear network coding can offer significant advantages in
settings that hinder optimal centralized network control.

Further work includes extensions to non-uniform code
distributions, possibly chosen adaptively or with some
rudimentary coordination, to optimize different perfor-
mance goals. Another question concerns selective place-
ment of random linear coding nodes. The randomized
and distributed nature of the approach also leads us
naturally to consider applications in network security.
It would also be interesting to consider protocol issues
for different communication scenarios, and to compare
specific coding and routing protocols over a range of
performance metrics.

APPENDIX

A. Edmonds matrix and flow formulations

Proof of Lemma 1:
(a) Note that

[
I −A(I− F)−1

0 I

] [
A 0

I− F BT
β

]

=
[

0 −A(I− F)−1BT
β

I− F BT
β

]

The first matrix,

[
I −A(I− F)−1

0 I

]
, has

determinant 1. So det

([
A 0

I− F BT
β

])
equals

det

([
0 −A(I− F)−1BT

β

I− F BT
β

])
, which can be

expanded as follows:

det

([
0 −A(I− F)−1BT

β

I− F BT
β

])

= (−1)r|E|det

([ −A(I− F)−1BT
β 0

BT
β I− F

])

= (−1)r|E|det(−A(I− F)−1BT
β )det(I− F)

= (−1)r(|E|+1)det(A(I− F)−1BT
β )det(I− F)
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The result follows from observing that det(I − F) = 1
since F is upper-triangular with zeros along the main
diagonal.
(b) As in part (a),

det

([
A(D) 0

I− F(D) BT
β (D)

])
= (−1)r(|E|+1)

det(A(D)(I− F(D))−1BT
β (D))det(I− F(D))

Since det(I− F(D)) is nonzero, the result follows.

Proof of Lemma 2:Recall that we assume an
ancestral numbering for the links of an acyclic graph.
For 1 ≤ h′ ≤ h ≤ |E|, let Sh′,h be the set of all
sets of integers{e1, e2, . . . , ek} such thath′ = e1 <
e2 < . . . < ek = h. Let H = {h1, . . . , hr}, where
1 ≤ h1 < . . . < hr ≤ |E|.

Let ah and ch denote columnh of A and AG
respectively. It follows from the definitions of transfer
matricesA andG = I + F + F2 + . . . that ch can be
computed recursively as follows:

c1 = a1 (2)

ch =
h−1∑

i=1

cifi,h + ah, h = 2, 3, . . . , |E|. (3)

Expanding the determinant ofAGH linearly in thehr
th

column using (3), we obtain

|AGH| =

∣∣∣∣∣∣

| |
ch1 . . . chr

| |

∣∣∣∣∣∣

=
∑

{i : 1 ≤ i < hr,
i 6= h1, . . . , hr−1}

∣∣∣∣∣∣

| | |
ch1 . . . chr−1 ci

| | |

∣∣∣∣∣∣
fi,hr

+

∣∣∣∣∣∣

| | |
ch1 . . . chr−1 ahr

| | |

∣∣∣∣∣∣
.

We proceed recursively, expanding each determinant
linearly in its column ch whose indexh is highest,
using (3) for h > 1 and (2) for h = 1. At each
expansion stage, the expression forAGH is a linear
combination of matrix determinants. Each nonzero de-
terminant corresponds to a matrix composed of columns
{ak1 , . . . ,aks

, cks+1 , . . . , ckr
} such thatki 6= kj ∀ i 6= j,

and min(k1, . . . , ks) > max(ks+1, . . . , kr). Its coeffi-
cient in the linear combination is a product of terms
fi,h such thath > ks+1, . . . , kr, and is of the form∏r

j=1 g(Ej) whereEj ∈ Skj′ ,hj
for somej′ ∈ [1, r] and

Ei ∩ Ej = ∅ ∀ i 6= j. By induction we have that these
properties hold for all nonzero determinant terms in the
course of the expansion. The expansion terminates when

the expression is a linear combination of determinants of
the form |al1 . . .alr |, at which point we have

|AGH| =
∑

{(h′1, . . . , h′r) :
1 ≤ h′j ≤ hj ,

h′i 6= h′j ∀ i 6= j}

∣∣∣∣∣∣

| |
ah′1 . . .ah′r
| |

∣∣∣∣∣∣

∑
{(E1, . . . , Er) :
Ej ∈ Sh′

j
,hj

,

Ei ∩ Ej = ∅
∀ i 6= j}

r∏

j=1

g(Ej).

The result follows by noting that each setE =
{e1, e2, . . . , ek} such thatg(E) 6= 0 corresponds to a
network path consisting of linkse1, . . . , ek; that the
conditionEj∩Ek = ∅ for all j 6= k, 1 ≤ j, k ≤ r implies
that the corresponding pathsE1, . . . , Er are disjoint; and
that

∣∣ah′1 . . .ah′r

∣∣ is nonzero only when linkshj′ transmit
r linearly independent combinations of source processes.

Proof of Theorem 1:By Lemma 1, the transfer ma-
trix determinant|AGBT

β | for any receiverβ is nonzero
if and only if the determinant of the corresponding
Edmonds matrix is nonzero. Thus, we consider the
determinantPβ of the latter matrix. Since each variable
ax,j (αk,j in the case of linearly correlated sources),fi,j

or bβ,i,l appears in exactly one column of the Edmonds
matrix, the largest exponent of each of these variables
in Pβ is 1, and the largest exponent of each variable in
the productP =

∏
β Pβ of d receivers’ determinants is

at mostd.
For the acyclic delay-free case, we use an induction

argument similar to that in [17] to show that there exists a
solution inFq, q > d, such thatP is nonzero. Consider
one of the variablesax,j , αk,j , fi,j or bβ,i,l, denoting
it by ξ1, and considerP as a polynomial in the other
variables with coefficients that are polynomials inξ1.
Since these coefficients have maximum degreed, they
are not divisible byξq

1 − ξ1. Thus, ξ1 can take some
value inFq such that at least one of the coefficients is
nonzero. Repeating this procedure for each of the other
variables gives the desired result.

Going from the acyclic delay-free case to the gen-
eral case with delays, variablesax,j , αk,j , fi,j are re-
placed byDax,j , Dαk,j , Dfi,j in the Edmonds ma-
trix, and variablesbβ,i,l become rational functions in
D, b′β,i(u), b′′β,i,l(u) given by Equation (1) in Section II-
B. Each variableb′′β,i,l(u) appears in only one entry of
the Edmonds matrix, and each variableb′β,i(u) appears
in only one column of the Edmonds matrix in a linear
expression that forms the denominator of each nonzero
entry of the column. Thus,Pβ can be expressed as a
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ratio of polynomials whose numerator is linear in each
variableax,j , αk,j , fi,j , b′β,i(u) or b′′β,i,l(u). Proceeding
similarly as for the acyclic delay-free case yields the
result.

B. Analysis of random linear network coding

Lemma 3:Consider a random network code(A,F)
in which η links j have associated code coefficients
ai,j , (αk,j for the case of linearly correlated sources)
and/or fl,j that are randomly chosen variables. The
determinant polynomial of the corresponding Edmonds

matrix

[
A 0

I− F BT
β

]
has maximum degreeη in the

random variables{ai,j , αk,j , fl,j}, and is linear in each
of these variables.

Proof: Each variable{ai,j , αk,j , fl,j} appears in
only one column of the Edmonds matrix. Only the
η columns corresponding to links transmitting random
combinations of input processes contain variable terms
{ai,j , αk,j , fl,j}.

The determinant can be written as the sum of prod-
ucts of r + |E| entries, one from each row and col-
umn. Each such product is linear in each variable term
{ai,j , αk,j , fl,j}, and has degree at mostη in these
variables.

Lemma 4:Let P be a nonzero polynomial in
F[ξ1, ξ2, . . .] of degree less than or equal todη, in
which the largest exponent of any variableξi is at most
d. Values for ξ1, ξ2, . . . are chosen independently and
uniformly at random fromFq ⊆ F. The probability that
P equals zero is at most1− (1− d/q)η for d < q.

Proof: For any variableξ1 in P , let d1 be the
largest exponent ofξ1 in P . ExpressP in the form
P = ξd1

1 P1 + R1, whereP1 is a polynomial of degree
at mostdη − d1 that does not contain variableξ1, and
R1 is a polynomial in which the largest exponent ofξ1

is less thand1. By the Principle of Deferred Decisions
(e.g., [23]), the probabilityPr[P = 0] is unaffected if we
set the value ofξ1 last after all the other coefficients have
been set. If, for some choice of the other coefficients,
P1 6= 0, thenP becomes a polynomial inF[ξ1] of degree
d1. By the Schwartz-Zippel Theorem (e.g., [23]), this
probabilityPr[P = 0|P1 6= 0] is upper bounded byd1/q.
So

Pr[P = 0] ≤ Pr[P1 6= 0]
d1

q
+ Pr[P1 = 0]

= Pr[P1 = 0]
(

1− d1

q

)
+

d1

q
. (4)

Next we considerPr[P1 = 0], choosing any variable
ξ2 in P1 and lettingd2 be the largest exponent ofξ2

in P1. We expressP1 in the form P1 = ξd2
2 P2 + R2,

whereP2 is a polynomial of degree at mostdη−d1−d2

that does not contain variablesξ1 or ξ2, and R2 is a
polynomial in which the largest exponent ofξ2 is less
thand2. Proceeding similarly, we assign variablesξi and
definedi and Pi for i = 3, 4, . . . until we reachi = k
wherePk is a constant andPr[Pk = 0] = 0. Note that
1 ≤ di ≤ d < q ∀ i and

∑k
i=1 di ≤ dη, so k ≤ dη.

Applying Schwartz-Zippel as before, we have fork′ =
1, 2, . . . , k

Pr[Pk′ = 0] ≤ Pr[Pk′+1 = 0]
(

1− dk′+1

q

)
+

dk′+1

q
.

(5)
Combining all the inequalities recursively, we can show
by induction that

Pr[P = 0] ≤
∑k

i=1 di

q
−

∑
i6=j didj

q2

+ . . . + (−1)k−1

∏k
i=1 di

qk
.

Now consider the integer optimization problem

Maximize f =
∑dη

i=1 di

q
−

∑
i 6=j didj

q2
+

. . . + (−1)dη−1

∏dη
i=1 di

qdη

subject to 0 ≤ di ≤ d < q ∀ i ∈ [1, dη],
dη∑

i=1

di ≤ dη, and di integer (6)

whose maximum is an upper bound onPr[P = 0].
We first consider the problem obtained by relaxing

the integer condition on the variablesdi. Let d∗ =
{d∗1, . . . , d∗dη} be an optimal solution.

For any setSh of h distinct integers from[1, dη], let

fSh
= 1−

P
i∈Sh

di

q +
P

i,j∈Sh,i 6=j didj

q2 −. . .+(−1)h
Q

i∈Sh
di

qh .
We can show by induction onh that0 < fSh

< 1 for any
setSh of h distinct integers in[1, dη]. If

∑dη
i=1 d∗i < dη,

then there is somed∗i < d, and there exists a feasible
solutiond = {d1, . . . , ddη} such thatdi = d∗i + ε, ε > 0,
anddh = d∗h for h 6= i, which satisfies

f(d)− f(d∗)
ε

q

(
1−

∑
h6=i d

∗
h

q
+ . . . + (−1)dη−1

∏
h6=i d

∗
h

qdη−1

)
.

This is positive, contradicting the optimality ofd∗, so∑dη
i=1 d∗i = dη.
Next suppose0 < d∗i < d for somed∗i . Then there

exists somed∗j such that0 < d∗j < d, since ifd∗j = 0 or d

for all otherj, then
∑dη

i=1 d∗i 6= dη. Assume without loss
of generality that0 < d∗i ≤ d∗j < d. Then there exists a
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feasible vectord = {d1, . . . , ddη} such thatdi = d∗i − ε,
dj = d∗j + ε, ε > 0, and dh = d∗h ∀ h 6= i, j, which
satisfies

f(d)− f(d∗) = −
(

(d∗i − d∗j )ε− ε2

q2

)

(
1−

∑
h6=i,j d∗h

q
− . . . + (−1)dη−2

∏
h6=i,j d∗h
qdη−2

)
.

This is again positive, contradicting the optimality ofd∗.
Thus,

∑dη
i=1 d∗i = dη, and d∗i = 0 or d. So exactly

η of the variablesd∗i are equal tod. Since the optimal
solution is an integer solution, it is also optimal for the
integer program (6). The corresponding optimalf =
η d

q −
(

η
2

)
d2

q2 + . . . + (−1)η−1 dη

qη = 1−
(
1− d

q

)η
.

Proof of Theorem 2:There areη links j with
associated code coefficients{ai,j (αk,j in the case of
linearly correlated sources),fl,j} that are chosen inde-
pendently and uniformly at random overFq. To check if
the resulting network code(A,F) is valid for a receiver
β, it suffices to check that the determinant of the corre-
sponding Edmonds matrix is nonzero (Lemma 1). This
determinant, which we denote byPβ, is a polynomial
linear in each variable{ax,j , αk,j , fi,j}, with total degree
at mostη in these variables (Lemma 3). The product∏

β Pβ for d receivers is, accordingly, a polynomial in
{ax,j , αk,j , fi,j} of total degree at mostdη, and in which
the largest exponent of each of these variables is at
most d. Applying Lemma 4,

∏
β Pβ is nonzero with

probability at least1−
(
1− d

q

)η
.

The bound is attained with equality for a network with
independent sources that consists only of link-disjoint
paths, one for each source-receiver pair. In this case,
there is a one-to-one correspondence between links and
variables{ai,j , fl,j}. Each of these variables must be
nonzero in order for the code to be valid for all receivers.

Proof of Theorem 3:By Lemma 2, a given
network code is valid if, for each receiverβ,
a linear combination of product terms of the
form ax1,l1 . . . axr,lrfi1,lr+1 . . . fiηβ

,lr+ηβ
, where

{l1, . . . , lr+ηβ
} form a flow solution toβ, is nonzero.

The product of the corresponding expressions ford
receivers has degree less than or equal todη′, where
η′ = maxβ ηβ, and the largest exponent of any variable
is at mostd. Applying Lemma 4 yields the result.

The same proof holds for linearly correlated sources,
by considering variablesαk,j in place of variablesai,j .

Proof of Theorem 4:Recall that links in an acyclic
graph are numbered ancestrally. For0 ≤ j ≤ |E|,

suppose random network coding is done over linksi ≤ j,
if any, and any linki ≥ j +1 is deleted with probability
d/q. Let Gj be the graph formed by removing deleted
links from G. Let Eβ,j be the event that there exist code
coefficients for undeleted linksi ≥ j + 1 such that the
resulting network code is valid for receiverβ over Gj .
Denote bypβ,j be the probability ofEβ,j .

To prove the theorem, we need to show that
Pr(

⋃
β Eβ,0) ≤ Pr(

⋃
β Eβ,|E|), which follows from

showing thatPr(
⋃

β Eβ,j) ≤ Pr(
⋃

β Eβ,j+1) for j =
0, . . . , |E|.

For any0 ≤ j ≤ |E| − 1, consider any given subset
of links j + 2, . . . , |E| that are deleted, forming graph
Gj+1, and any given code coefficients for links1, . . . , j.
We compare the conditional probability of event

⋃
β Eβ,j

(when link j + 1 is deleted with probabilityd/q) and
event

⋃
β Eβ,j+1 (when random code coefficients are

chosen forj + 1). There are three cases:
Case 1: event

⋃
β Eβ,j occurs if link j + 1 is deleted.

Then event
⋃

β Eβ,j occurs regardless of whether link
j + 1 is deleted, and event

⋃
β Eβ,j+1 occurs regardless

of the values of the random code coefficients for link
j +1, since a valid code exists overGj+1 with the given
code coefficients for links1, . . . , j and zero coefficients
fj+1,k for any link k > j +1 such thato(k) = d(j +1).

Case 2: event
⋃

β Eβ,j does not occur if linkj + 1 is
deleted, but occurs if linkj+1 is not deleted. Then there
exists at least one choice of code coefficients for linkj+
1 and any undeleted linksi ≥ j+1 such that the resulting
network code is valid for all receivers overGj+1. Each
receiverβ has a set ofr terminal links whose coefficient
vectors form a full rank set. Consider the determinant of
the associated matrix, expressed as a polynomialPβ,j+1

with the code coefficients{ax,j+1, fi,j+1} for link j + 1
as random variables. From Lemma 1,Pβ,j+1 is linear
in the variables{ax,j+1, fi,j+1}. The product

∏
β Pβ,j+1

for d receivers is a polynomial of degree at mostd in
the variables{ax,j+1, fi,j+1}. If this product is nonzero,
the corresponding code is valid. By the Schwartz-Zippel
Theorem, this product takes a nonzero value with prob-
ability 1 − d/q when the variables{ax,j+1, fi,j+1} are
chosen uniformly at random from a finite field of sizeq.
Thus, the conditional probability of event

⋃
β Eβ,j+1 is

at least1− d/q.
Case 3: event

⋃
β Eβ,j does not occur regardless of

whether linkj+1 is deleted. Then event
⋃

β Eβ,j+1 does
not occur regardless of the values of the random code
coefficients for linkj+1, since no valid code exists over
Gj+1 with the given code coefficients for links1, . . . , j.

In all three cases, the conditional probability of event⋃
β Eβ,j is less than or equal to the conditional proba-

bility of event
⋃

β Eβ,j+1.
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The same proof holds for linearly correlated sources,
by considering variablesαk,j in place of variablesai,j .

Proof of Theorem 5:Note that for any multicast
connection problem, the probability that a random net-
work code is valid for a particular receiverβ is equal
to the probability that a random network code is valid
for a modified connection problem in whichβ is the
only receiver. Consider any single-receiver connection
problem C on a graphGC . Let pC be the probability
that the connection requirements ofC are feasible on the
graph obtained by deleting links ofGC with probability
1− (1− p)(1− 1/q). Let G′C be the graph obtained by
deleting links ofGC with probabilityp, andG′′C the graph
obtained by deleting links ofG′C with probability1/q. By
Theorem 4, the probability that random network coding
gives a code valid for the connection requirements of
C on G′C can be lower bounded by the probability that
the connection requirements are feasible onG′′C , which
is equal topC .

Consider a single-receiver connection problemC1

with r source processes originating at a common source
node, on a graphGC1 consisting ofr + y link-disjoint
source-receiver paths of lengthL. Let C2 be any
other single-receiver connection problem withr source
processes on ay-redundant graphGC2 with source-
receiver paths of length at mostL. Suppose links of each
graph are deleted with probability1− (1− p)(1− 1/q).
We show by induction ony that pC2 ≥ pC1 ∀ y, r, L.

For i = 1, 2, we consider a setPi of links in graphGCi

forming r link-disjoint source-receiver paths sufficient to
transmit all processes to the receiver. We distinguish two
cases:

Case 1: None of the links inPi are deleted. In this
case the connections are feasible.

Case 2: There exists some linkji ∈ Pi that is deleted.
Then we have

Pr(success) = Pr(case 1)

+Pr(case 2) Pr(success|case 2)

= 1− Pr(case 2)

(1− Pr(success|case 2)) .

SinceP1 has at least as many links asP2, Pr(case 2, i =
1) ≥ Pr(case 2, i = 2). Thus, if we can show that
Pr(success|case 2, i = 1) ≤ Pr(success|case 2, i =
2), the induction hypothesisPr(success|i = 1) ≤
Pr(success|i = 2) follows.

For y = 0, the hypothesis is true since
Pr(success|case 2, i = 1) = 0. For y > 0, in case 2 we
can remove linkji leaving a(y−1)-redundant graph̃GCi

.
By the induction hypothesis, the probability of success
for G̃C1 is less than or equal to that for̃GC2 .

Thus,pC2 ≥ pC1 , which is the probability that all links
on at leastr of r+y length-L paths are not deleted. The
result follows from observing that the probability that the

links on a path are not deleted is
(
(1− p)(1− 1

q )
)L

.

Proof of Theorem 6:We consider transmission, by
random linear network coding, of one block of source
bits, represented by vector[ x1 x2 ] ∈ Fn(r1+r2)

2 . The
transfer matrixAGT specifies the mapping from the
vector of source bits[ x1 x2 ] to the vectorz of
processes on the setT of terminal links incident to the
receiver.

The first part of the proof parallels the analysis
in [4]. The α-decoder maps a vectorz of received
processes onto a vector[ x̃1 x̃2 ] ∈ Fn(r1+r2)

2 mini-
mizing α(Px1x2) subject to[ x1 x2 ]AGT = z. For a
minimum entropy decoder,α(Px1x2) ≡ H(Px1x2), while
for a maximum Q-probability decoder,α(Px1x2) ≡
− log Qn(x1x2). We consider three types of errors: in
the first type, the decoder has the correct value forx2

but outputs the wrong value forx2; in the second, the
decoder has the correct value forx1 but outputs the
wrong value forx2; in the third, the decoder outputs
wrong values for bothx1 andx2. The error probability
is upper bounded by the sum of the probabilities of the
three types of errors,

∑3
i=1 pi

e.
As in [4], (joint) type of sequences are considered as

(joint) distributionsPX (PX,Y , etc.) of dummy variables
X, Y , etc. The set of different types of sequences inFk

2

is denoted byP(Fk
2). Defining the sets of types

Pi
n =





{PXX̃Y Ỹ ∈ P(Fnr1
2 × Fnr1

2 × Fnr2
2 × Fnr2

2 ) |
X̃ 6= X, Ỹ = Y } i = 1

{PXX̃Y Ỹ ∈ P(Fnr1
2 × Fnr1

2 × Fnr2
2 × Fnr2

2 ) |
X̃ = X, Ỹ 6= Y } i = 2

{PXX̃Y Ỹ ∈ P(Fnr1
2 × Fnr1

2 × Fnr2
2 × Fnr2

2 ) |
X̃ 6= X, Ỹ 6= Y } i = 3

sequences

TXY = {[ x1 x2 ] ∈ Fn(r1+r2)
2 |

Px1x2 = PXY }
TX̃Ỹ |XY (x1x2) = {[ x̃1 x̃2 ] ∈ Fn(r1+r2)

2 |
Px̃1x̃2x1x2 = PX̃Ỹ XY }

we have

p1
e ≤

∑

P
XX̃Y Ỹ

∈ P1
n :

α(P
X̃Y

) ≤ α(PXY )

∑
(x1, x2) ∈
TXY

Qn(x1x2) Pr

(
∃(x̃1, x̃2) ∈

TX̃Ỹ |XY (x1x2) s.t.[ x1 − x̃1 0 ]AGT = 0

)
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≤
∑

P
XX̃Y Ỹ

∈ P1
n :

α(P
X̃Y

) ≤ α(PXY )

∑
(x1, x2) ∈ TXY

Qn(x1x2)

min

{ ∑
(x̃1, x̃2) ∈
T

X̃Ỹ |XY
(x1x2)

Pr
(
[ x1 − x̃1 0 ]AGT = 0

)
, 1

}

Similarly,

p2
e ≤

∑

P
XX̃Y Ỹ

∈ P2
n :

α(P
XỸ

) ≤ α(PXY )

∑
(x1, x2) ∈ TXY

Qn(x1x2)

min

{ ∑
(x̃1, x̃2) ∈
T

X̃Ỹ |XY
(x1x2)

Pr
(
[ 0 x2 − x̃2 ]AGT = 0

)
, 1

}

p3
e ≤

∑

P
XX̃Y Ỹ

∈ P3
n :

α(P
X̃Ỹ

) ≤ α(PXY )

∑
(x1, x2) ∈ TXY

Qn(x1x2)

min

{ ∑
(x̃1, x̃2) ∈
T

X̃Ỹ |XY
(x1x2)

Pr
(
[ x1 − x̃1 x2 − x̃2 ]AGT = 0

)

, 1

}

where the probabilities are taken over realizations of
the network transfer matrixAGT corresponding to the
random network code. The probabilities

P1 = Pr
(
[ x1 − x̃1 0 ]AGT = 0

)

P2 = Pr
(
[ 0 x2 − x̃2 ]AGT = 0

)

P3 = Pr
(
[ x1 − x̃1 x2 − x̃2 ]AGT = 0

)

for nonzerox1 − x̃1,x2 − x̃2 can be calculated for a
given network, or bounded in terms ofn and parameters
of the network as we will show later.

As in [4], we can apply some simple cardinality
bounds

|P1
n| < (n + 1)2

2r1+r2

|P2
n| < (n + 1)2

r1+2r2

|P3
n| < (n + 1)2

2r1+2r2

|TXY | ≤ exp{nH(XY )}
|TX̃Ỹ |XY (x1x2)| ≤ exp{nH(X̃Ỹ |XY )}

and the identity

Qn(x1x2) = exp{−n(D(PXY ||Q) + H(XY ))},
(x1,x2) ∈ TXY (7)

to obtain

p1
e ≤ exp

{
− n min

P
XX̃Y Ỹ

∈ P1
n:

α(P
X̃Y

) ≤ α(PXY )

(
D(PXY ||Q) +

∣∣∣∣−
1
n

log P1 −H(X̃|XY )
∣∣∣∣
+ )

+ 22r1+r2 log(n + 1)

}

p2
e ≤ exp

{
− n min

P
XX̃Y Ỹ
∈ P2

n:
α(P

XỸ
) ≤

α(PXY )

(
D(PXY ||Q) +

∣∣∣∣−
1
n

log P2 −H(Ỹ |XY )
∣∣∣∣
+ )

+ 2r1+2r2 log(n + 1)

}

p3
e ≤ exp

{
− n min

P
XX̃Y Ỹ
∈ P3

n:
α(P

X̃Ỹ
) ≤

α(PXY )

(
D(PXY ||Q) +

∣∣∣∣−
1
n

log P3 −H(X̃Ỹ |XY )
∣∣∣∣
+ )

+

22r1+2r2 log(n + 1)

}
,

where the exponents and logs are taken with respect to
base 2.

For the minimum entropy decoder, we have

α(PX̃Ỹ ) ≤ α(PXY ) ⇒



H(X̃|XY ) ≤ H(X̃|Y ) ≤ H(X|Y ) for Y = Ỹ

H(Ỹ |XY ) ≤ H(Ỹ |X) ≤ H(Y |X) for X = X̃

H(X̃Ỹ |XY ) ≤ H(X̃Ỹ ) ≤ H(XY )

which gives

p1
e ≤ exp

{
− nmin

XY

(
D(PXY ||Q) +

∣∣∣∣−
1
n

log P1 −H(X|Y )
∣∣∣∣
+

)

+22r1+r2 log(n + 1)

}
(8)

p2
e ≤ exp

{
− nmin

XY

(
D(PXY ||Q) +

∣∣∣∣−
1
n

log P2 −H(Y |X)
∣∣∣∣
+

)

+2r1+2r2 log(n + 1)

}
(9)

p3
e ≤ exp

{
− nmin

XY

(
D(PXY ||Q) +
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∣∣∣∣−
1
n

log P3 −H(XY )
∣∣∣∣
+

)

+22r1+2r2 log(n + 1)

}
. (10)

We next show that these bounds also hold for the
maximumQ-probability decoder, for which, from (7),

α(PX̃Ỹ ) ≤ α(PXY ) ⇒ D(PX̃Ỹ ||Q) + H(X̃Ỹ )

≤ D(PXY ||Q) + H(XY ). (11)

For i = 1, Ỹ = Y , and (11) gives

D(PX̃Y ||Q) + H(X̃|Y ) ≤ D(PXY ||Q) + H(X|Y ).
(12)

We show that

min
P

XX̃Y Ỹ
∈ P1

n :
α(P

X̃Ỹ
) ≤

α(PXY )

(
D(PXY ||Q) +

∣∣∣∣−
1
n

log P1 −H(X̃|XY )
∣∣∣∣
+
)

≥ min
P

XX̃Y Ỹ
∈ P1

n :
α(P

X̃Ỹ
) ≤

α(PXY )

(
D(PXY ||Q) +

∣∣∣∣−
1
n

log P1 −H(X̃|Y )
∣∣∣∣
+
)

≥ min
XY

(
D(PXY ||Q) +

∣∣∣∣−
1
n

log P1 −H(X|Y )
∣∣∣∣
+
)

by considering two possible cases for anyX, X̃, Y
satisfying (12):

Case 1:− 1
n log P1 −H(X|Y ) < 0. Then

D(PXY ||Q) +
∣∣∣∣−

1
n

log P1 −H(X̃|Y )
∣∣∣∣
+

≥ D(PXY ||Q) +
∣∣∣∣−

1
n

log P1 −H(X|Y )
∣∣∣∣
+

≥ min
XY

(
D(PXY ||Q) +

∣∣∣∣−
1
n

log P1 −H(X|Y )
∣∣∣∣
+
)

Case 2:− 1
n log P1 −H(X|Y ) ≥ 0. Then

D(PXY ||Q) +
∣∣∣∣−

1
n

log P1 −H(X̃|Y )
∣∣∣∣
+

≥ D(PXY ||Q) +
(
− 1

n
log P1 −H(X̃|Y )

)

≥ D(PX̃Y ||Q) +
(
− 1

n
log P1 −H(X|Y )

)
by (12)

= D(PX̃Y ||Q) +
∣∣∣∣−

1
n

log P1 −H(X|Y )
∣∣∣∣
+

which gives

D(PXY ||Q) +
∣∣∣∣−

1
n

log P1 −H(X̃|Y )
∣∣∣∣
+

≥ 1
2

[
D(PXY ||Q) +

∣∣∣∣−
1
n

log P1 −H(X̃|Y )
∣∣∣∣
+

+D(PX̃Y ||Q) +
∣∣∣∣−

1
n

log P1 −H(X|Y )
∣∣∣∣
+
]

≥ 1
2

[
D(PXY ||Q) +

∣∣∣∣−
1
n

log P1 −H(X|Y )
∣∣∣∣
+

+D(PX̃Y ||Q) +
∣∣∣∣−

1
n

log P1 −H(X̃|Y )
∣∣∣∣
+
]

≥ min
XY

(
D(PXY ||Q) +

∣∣∣∣−
1
n

log P1 −H(X|Y )
∣∣∣∣
+
)

.

A similar proof holds fori = 2.
For i = 3, we show that

min
P

XX̃Y Ỹ
∈ P3

n :
α(P

X̃Ỹ
) ≤

α(PXY )

(
D(PXY ||Q) +

∣∣∣∣−
1
n

log P3 −H(X̃Ỹ |XY )
∣∣∣∣
+
)

≥ min
P

XX̃Y Ỹ
∈ P3

n :
α(P

X̃Ỹ
) ≤

α(PXY )

(
D(PXY ||Q) +

∣∣∣∣−
1
n

log P3 −H(X̃Ỹ )
∣∣∣∣
+
)

≥ min
XY

(
D(PXY ||Q) +

∣∣∣∣−
1
n

log P3 −H(XY )
∣∣∣∣
+
)

by considering two possible cases for anyX, X̃, Y, Ỹ
satisfying (11):

Case 1:− 1
n log P3 −H(XY ) < 0. Then

D(PXY ||Q) +
∣∣∣∣−

1
n

log P3 −H(X̃Ỹ )
∣∣∣∣
+

≥ D(PXY ||Q) +
∣∣∣∣−

1
n

log P3 −H(XY )
∣∣∣∣
+

≥ min
XY

(
D(PXY ||Q) +

∣∣∣∣−
1
n

log P3 −H(XY )
∣∣∣∣
+
)

Case 2:− 1
n log P3 −H(XY ) ≥ 0. Then

D(PXY ||Q) +
∣∣∣∣−

1
n

log P3 −H(X̃Ỹ )
∣∣∣∣
+

≥ D(PXY ||Q) +
(
− 1

n
log P3 −H(X̃Ỹ )

)

≥ D(PX̃Ỹ ||Q) +
(
− 1

n
log P3 −H(XY )

)
by (11)

= D(PX̃Ỹ ||Q) +
∣∣∣∣−

1
n

log P3 −H(XY )
∣∣∣∣
+
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which gives

D(PXY ||Q) +
∣∣∣∣−

1
n

log P3 −H(X̃Ỹ )
∣∣∣∣
+

≥ 1
2

[
D(PXY ||Q) +

∣∣∣∣−
1
n

log P3 −H(X̃Ỹ )
∣∣∣∣
+

+D(PX̃Ỹ ||Q) +
∣∣∣∣−

1
n

log P3 −H(XY )
∣∣∣∣
+
]

≥ min
XY

(
D(PXY ||Q) +

∣∣∣∣−
1
n

log P3 −H(XY )
∣∣∣∣
+
)

.

Here the analysis diverges from that of [4], as we
consider general networks instead of the simple Slepian-
Wolf network. We bound the probabilitiesPi in terms
of n and the network parametersmi, i = 1, 2, the
minimum cut capacity between the receiver and source
Xi, m3, the minimum cut capacity between the receiver
and both sources, andL, the maximum source-receiver
path length.

Let G1 and G2 be subgraphs of graphG consisting
of all links downstream of sources 1 and 2 respectively,
where a linkl is considered downstream of a sourceXi

if a(i) = o(l) or if there is a directed path from the
source too(l). Let G3 be equal toG.

Note that in a random linear network code, any linkl
which has at least one nonzero input transmits the zero
process with probability 1

2ncl
, wherecl is the capacity

of l. This is the same as the probability that a pair of
distinct values for the inputs ofl are mapped to the same
output value onl.

For a given pair of distinct source values, letEl be the
event that the corresponding inputs to linkl are distinct,
but the corresponding values onl are the same. LetE(G̃)
be the event thatEl occurs for some linkl on every
source-receiver path in graph̃G. Pi is then equal to the
probability of eventE(Gi).

Let G′i, i = 1, 2, 3 be the graph consisting ofmi node-
disjoint paths, each consisting ofL links each of unit
capacity. We show by induction onmi that Pi is upper
bounded by the probability of eventE(G′i).

We let G̃ be the graphsGi,G′i, i = 1, 2, 3 in turn, and
consider any particular source-receiver pathPG̃ in G̃. We
distinguish two cases:

Case 1:El does not occur for any of the linksl on
the pathPG̃ . In this case the eventE(G̃) occurs with
probability 0.

Case 2: There exists some link̂l on the pathPG̃ for
which El occurs.

Thus, we have Pr(E(G̃)) =
Pr(case 2) Pr(E(G̃)|case 2). Since PG′i has at
least as many links asPGi

, Pr(case 2 forG′i) ≥

Pr(case 2 forGi). Therefore, if we can show that
Pr(E(G′i)|case 2) ≥ Pr(E(Gi)|case 2), the induction
hypothesisPr(E(G′i)) ≥ Pr(E(Gi)) follows.

For mi = 1, the hypothesis is true since
Pr(E(G′i)|case 2) = 1. For mi > 1, in case 2, removing
the link l̂ leaves, forG′i, the effective equivalent of a
graph consisting ofmi−1 node-disjoint length-L paths,
and, forGi, a graph of minimum cut at leastmi−1. The
result follows from applying the induction hypothesis to
the resulting graphs.

Thus,Pr(E(G′i)) gives an upper bound on probability
Pi:

Pi ≤
(

1− (1− 1
2n

)L

)mi

≤
(

L

2n

)mi

.

Substituting this into the error bounds (8)-(10) gives the
desired result.

C. Random flooding vs. random coding on a grid

Proof of Proposition 1:To simplify notation, we
assume without loss of generality that the axes are
chosen such that the source is at(0, 0), and0 < x ≤ y.
Let Ex,y be the event that two different processes are
received by a node at grid position(x, y) relative to the
source. The statement of the proposition is then

Pr[Ex,y] ≤
(
1 + 2y−x+1(4x−1 − 1)/3

)
/2y+x−2 (13)

which we prove by induction.
Let Y h

x,y denote the process transmitted on the link
between(x − 1, y) and (x, y) and let Y v

x,y denote the
process transmitted on the link between(x, y − 1) and
(x, y) (ref Figure 4).

Observe thatPr[Ex,y|Ex−1,y] = 1/2, since with
probability 1/2 node (x − 1, y) transmits to node
(x, y) the process complementary to whatever process
is being transmitted from node(x, y − 1). Similarly,
Pr[Ex,y|Ex,y−1] = 1/2, soPr[Ex,y|Ex−1,y or Ex,y−1] =
1/2.
Case 1:Ex−1,y−1

Case 1a:Y h
x−1,y 6= Y v

x,y−1. With probability 1
2 ,

Y v
x−1,y 6= Y h

x−1,y, resulting inEx,y−1∪Ex−1,y. With
probability 1

2 , Y v
x,y−1 = Y h

x,y−1, resulting inEx,y.
So Pr[Ex,y| Case 1a] = 1

2 × 1
2 + 1

2 = 3
4 .

Case 1b:Y h
x−1,y = Y v

x,y−1. Either Ex,y−1 ∪ Ex−1,y

or Ex,y−1 ∪ Ex−1,y, so Pr[Ex,y| Case 1b] = 1/2.

Case 2:Ex−1,y−1

Case 2a:Y h
x−1,y 6= Y v

x,y−1. Either Ex,y−1 ∪ Ex−1,y

or Ex,y−1 ∪ Ex−1,y, so Pr[Ex,y| Case 2a] = 1/2.
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Case 2b:Y h
x−1,y = Y v

x,y−1 = Y h
x−1,y−1. By the

assumption of case 2,Y v
x,y−1 is also equal to this

same process, andPr[Ex,y| Case 2b] = 0.
Case 2c:Y h

x−1,y = Y v
x,y−1 6= Y h

x−1,y−1. ThenEx,y−1

andEx−1,y, so Pr[Ex,y| Case 2c] = 1/2.

So

Pr[Ex,y|Ex−1,y−1] ≤ max (Pr[Ex,y| Case 1a],

Pr[Ex,y| Case 1b])

= 3/4

Pr[Ex,y|Ex−1,y−1] ≤ max (Pr[Ex,y| Case 2a],

Pr[Ex,y| Case 2b],

Pr[Ex,y| Case 2c])

= 1/2

Pr[Ex,y] ≤ 3
4

Pr[Ex−1,y−1]

+
1
2

Pr[Ex−1,y−1]

=
1
2

+
1
4

Pr[Ex−1,y−1]

If (13) holds for some(x, y), then it also holds for
(x + 1, y + 1):

Pr[Ex+1,y+1] ≤ 1
2

+
1
4

Pr[Ex,y]

=
1
2

+
1
4

(
1 + 2y−x+1(1 + 4 + . . . + 4x−2)

2y+x−2

)

=
1 + 2y−x+1(4x − 1)/3

2y+1+x+1−2

Now Pr[E1,y′ ] = 1/2y′−1, since there arey′ − 1 nodes,
(1, 1), . . . , (1, y′ − 1), at which one of the processes
being transmitted to(1, y′) is eliminated with probability
1/2. Settingy′ = y − x + 1 gives the base case which
completes the induction.

Proof of Proposition 2: In the random coding
scheme we consider, the only randomized variables are
the fi,j variables at nodes receiving information on two
links. The number of such nodes on each source-receiver
path isx+y−2, so the total degree ofPβ is 2(x+y−2).
Applying Theorem 3 yields the result.
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Rcv 2Rcv  1

ξ5(ξ1X1 + ξ2X2)
+ξ6(ξ3X1 + ξ4X2)

X1,X2ξ1X1 + ξ2X2 ξ3X1 + ξ4X2

Fig. 1. An example of distributed random linear network coding.X1 andX2 are the source processes being multicast to the receivers, and
the coefficientsξi are randomly chosen elements of a finite field. The label on each link represents the process being transmitted on the link.
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Rcv 2Rcv  1

Υ5(Υ1x1 + Υ2x2)
+Υ6(Υ3x1 + Υ4x2)

Srcs X1, X2Υ1x1 + Υ2x2 Υ3x1 + Υ4x2

Fig. 2. An example illustrating vector linear coding.x1 ∈ Fnr1
2 andx2 ∈ Fnr2

2 are vectors of source bits being multicast to the receivers,
and the matricesΥi are matrices of random bits. Suppose the capacity of each link isc. MatricesΥ1 andΥ3 arenr1 ×nc, Υ2 andΥ4 are
nr2 × nc, andΥ5 andΥ6 arenc× nc. The label on each link represents the process being transmitted on the link.
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Fig. 3. Rectangular grid network with two processesX1 andX2 originating at a source node. The links are all directed outwards from the
source node. The labels on the links show the source transmissions in the random flooding scheme RF, where one process is sent in both
directions on one axis and the other process in both directions along the other axis.
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Fig. 4. Rectangular grid network.Y h
x,y denotes the process transmitted on the link between(x − 1, y) and (x, y), andY v

x,y denotes the
process transmitted on the link between(x, y − 1) and (x, y).


